메뉴 건너뛰기




Volumn 40, Issue 1, 2014, Pages 143-153

Accelerating FCM neural network classifier using graphics processing units with CUDA

Author keywords

Compute unified device architecture; Graphics processing units; Neural networks classifier; Parallel floating centroids method

Indexed keywords


EID: 84894904487     PISSN: 0924669X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10489-013-0450-8     Document Type: Article
Times cited : (9)

References (36)
  • 1
    • 79751524883 scopus 로고    scopus 로고
    • First and second order SMO algorithms for LS-SVM classifiers
    • 10.1007/s11063-010-9162-9
    • Lopez J, Suykens Johan AK (2011) First and second order SMO algorithms for LS-SVM classifiers. Neural Process Lett 33(1):31-44
    • (2011) Neural Process Lett , vol.33 , Issue.1 , pp. 31-44
    • Lopez, J.1    Suykens Johan, A.K.2
  • 3
    • 0037230867 scopus 로고    scopus 로고
    • Efficient computations for large least square support vector machine classifiers
    • 10.1016/S0167-8655(02)00190-3 1053.68082
    • Chua KS (2003) Efficient computations for large least square support vector machine classifiers. Pattern Recognit Lett 24(1-3):75-80
    • (2003) Pattern Recognit Lett , vol.24 , Issue.1-3 , pp. 75-80
    • Chua, K.S.1
  • 4
    • 0002453611 scopus 로고
    • Introduction of decision trees
    • Qinlan JR (1986) Introduction of decision trees. Mach Learn 1(1):86-106
    • (1986) Mach Learn , vol.1 , Issue.1 , pp. 86-106
    • Qinlan, J.R.1
  • 5
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • 10.1006/inco.1995.1136 0833.68109 1348530
    • Freund Y (1995) Boosting a weak learning algorithm by majority. Inf Comput 121(2):256-285
    • (1995) Inf Comput , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 6
    • 0030383603 scopus 로고    scopus 로고
    • Effect data mining using neural networks
    • 10.1109/69.553163
    • Hongjun L, Rudy S, Huan L (1996) Effect data mining using neural networks. IEEE Trans Knowl Data Eng 8(6):957-961
    • (1996) IEEE Trans Knowl Data Eng , vol.8 , Issue.6 , pp. 957-961
    • Hongjun, L.1    Rudy, S.2    Huan, L.3
  • 7
    • 45849130515 scopus 로고    scopus 로고
    • A reduced and comprehensible polynomial neural network for classification
    • 10.1016/j.patrec.2008.04.012
    • Misraa BB, Dehurib S, Dashc PK, Pandad G (2008) A reduced and comprehensible polynomial neural network for classification. Pattern Recognit Lett 29(12):1705-1712
    • (2008) Pattern Recognit Lett , vol.29 , Issue.12 , pp. 1705-1712
    • Misraa, B.B.1    Dehurib, S.2    Dashc, P.K.3    Pandad, G.4
  • 8
    • 22844434823 scopus 로고    scopus 로고
    • Classification methodologies of multilayer perceptrons with sigmoid activation functions
    • 10.1016/j.patcog.2005.03.024
    • Daqi G, Yan J (2005) Classification methodologies of multilayer perceptrons with sigmoid activation functions. Pattern Recognit 38(10):1469-1482
    • (2005) Pattern Recognit , vol.38 , Issue.10 , pp. 1469-1482
    • Daqi, G.1    Yan, J.2
  • 9
    • 80052970383 scopus 로고    scopus 로고
    • Rough sets for adapting wavelet neural networks as a new classifier system
    • 10.1007/s10489-010-0218-3
    • Hassan YF (2011) Rough sets for adapting wavelet neural networks as a new classifier system. Appl Intell 35(2):260-268
    • (2011) Appl Intell , vol.35 , Issue.2 , pp. 260-268
    • Hassan, Y.F.1
  • 10
    • 80053574083 scopus 로고    scopus 로고
    • Neuro-logistic models based on evolutionary generalized radial basis function for the microarray gene expression classification problem
    • 10.1007/s11063-011-9187-8
    • Castano A, Fernandez-Navarro F, Hervas-Martinez C et al (2011) Neuro-logistic models based on evolutionary generalized radial basis function for the microarray gene expression classification problem. Neural Process Lett 34(2):117-131
    • (2011) Neural Process Lett , vol.34 , Issue.2 , pp. 117-131
    • Castano, A.1    Fernandez-Navarro, F.2    Hervas-Martinez, C.3
  • 11
    • 80052961353 scopus 로고    scopus 로고
    • A neural network based retrainable framework for robust object recognition with application to mobile robotics
    • 10.1007/s10489-010-0212-9
    • An S-Y, Kang J-G, Choi W-S, Oh S-Y (2011) A neural network based retrainable framework for robust object recognition with application to mobile robotics. Appl Intell 35(2):190-210
    • (2011) Appl Intell , vol.35 , Issue.2 , pp. 190-210
    • An, S.-Y.1    Kang, J.-G.2    Choi, W.-S.3    Oh, S.-Y.4
  • 12
    • 84857668132 scopus 로고    scopus 로고
    • An expert target recognition system using a genetic wavelet neural network
    • 10.1007/s10489-012-0341-4
    • Avci E (2012) An expert target recognition system using a genetic wavelet neural network. Appl Intell 37(4):475-487
    • (2012) Appl Intell , vol.37 , Issue.4 , pp. 475-487
    • Avci, E.1
  • 13
    • 84862540425 scopus 로고    scopus 로고
    • An insect classification analysis based on shape features using quality threshold ARTMAP and moment invariant
    • 10.1007/s10489-011-0310-3
    • Yaakob SN, Jain L (2012) An insect classification analysis based on shape features using quality threshold ARTMAP and moment invariant. Appl Intell 37(1):12-30
    • (2012) Appl Intell , vol.37 , Issue.1 , pp. 12-30
    • Yaakob, S.N.1    Jain, L.2
  • 14
    • 0037633244 scopus 로고    scopus 로고
    • On the classification of multispectral satellite images using the multilayer perceptron
    • 10.1016/S0031-3203(03)00013-X 1045.68120
    • Venkatesh YV, Kumar Raja S (2003) On the classification of multispectral satellite images using the multilayer perceptron. Pattern Recognit 36(9):2161-2175
    • (2003) Pattern Recognit , vol.36 , Issue.9 , pp. 2161-2175
    • Venkatesh, Y.V.1    Kumar Raja, S.2
  • 15
    • 67349156354 scopus 로고    scopus 로고
    • A novel soft cluster neural network for the classification of suspicious areas in digital mammograms
    • 10.1016/j.patcog.2009.02.009 1192.68544
    • Verma B, McLeod P, Klevansky A (2009) A novel soft cluster neural network for the classification of suspicious areas in digital mammograms. Pattern Recognit 42(9):1845-1852
    • (2009) Pattern Recognit , vol.42 , Issue.9 , pp. 1845-1852
    • Verma, B.1    McLeod, P.2    Klevansky, A.3
  • 16
    • 67349122022 scopus 로고    scopus 로고
    • A fusion neural network classifier for image classification
    • 10.1016/j.patrec.2008.06.009 2557552
    • Kang S, Park S (2009) A fusion neural network classifier for image classification. Pattern Recognit Lett 30(9):789-793
    • (2009) Pattern Recognit Lett , vol.30 , Issue.9 , pp. 789-793
    • Kang, S.1    Park, S.2
  • 17
    • 84860917481 scopus 로고    scopus 로고
    • Improvement of neural network classifier using floating centroids
    • 10.1007/s10115-011-0410-8
    • Wang L, Yang B, Chen Y et al (2012) Improvement of neural network classifier using floating centroids. Knowl Inf Syst 31(3):433-454
    • (2012) Knowl Inf Syst , vol.31 , Issue.3 , pp. 433-454
    • Wang, L.1    Yang, B.2    Chen, Y.3
  • 18
    • 84872322299 scopus 로고    scopus 로고
    • Intelligent data structures selection using neural networks
    • 10.1007/s10115-011-0468-3
    • Czibula G, Gergely Czibula I, Dan Gaceanu R (2011) Intelligent data structures selection using neural networks. Knowl Inf Syst 34(1):171-192
    • (2011) Knowl Inf Syst , vol.34 , Issue.1 , pp. 171-192
    • Czibula, G.1    Gergely Czibula, I.2    Dan Gaceanu, R.3
  • 19
    • 84863359957 scopus 로고    scopus 로고
    • Research of neural network classifier based on FCM and PSO for breast cancer classification
    • Lecture notes in computer science 7208
    • Zhang L, Wang L, Wang X, Liu K, Abraham A (2012) Research of neural network classifier based on FCM and PSO for breast cancer classification. In: HAIS 2012, part I. Lecture notes in computer science, vol 7208, pp 647-654
    • (2012) HAIS 2012, Part i , pp. 647-654
    • Zhang, L.1    Wang, L.2    Wang, X.3    Liu, K.4    Abraham, A.5
  • 23
    • 84865137634 scopus 로고    scopus 로고
    • Parallel multi-swarm optimizer for gene selection in DNA microarrays
    • 10.1007/s10489-011-0325-9
    • Garcia-Nieto J, Alba E (2012) Parallel multi-swarm optimizer for gene selection in DNA microarrays. Appl Intell 37(2):255-266
    • (2012) Appl Intell , vol.37 , Issue.2 , pp. 255-266
    • Garcia-Nieto, J.1    Alba, E.2
  • 24
    • 67349267818 scopus 로고    scopus 로고
    • GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model
    • 10.1016/j.jcp.2009.03.018 1167.82347
    • Tobias P, Peter V, Wolfgang P et al (2009) GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model. J Comput Phys 228(12):4468-4477
    • (2009) J Comput Phys , vol.228 , Issue.12 , pp. 4468-4477
    • Tobias, P.1    Peter, V.2    Wolfgang, P.3
  • 25
    • 58149513222 scopus 로고    scopus 로고
    • Fast cone-beam CT image reconstruction using GPU hardware
    • Guorui Y, Jie T, Shouping Z et al (2008) Fast cone-beam CT image reconstruction using GPU hardware. J X-Ray Sci Technol 16(4):225-234
    • (2008) J X-Ray Sci Technol , vol.16 , Issue.4 , pp. 225-234
    • Guorui, Y.1    Jie, T.2    Shouping, Z.3
  • 26
    • 73349117827 scopus 로고    scopus 로고
    • An implementation of the smooth particle Mesh Ewald method on GPU hardware
    • 10.1021/ct900275y
    • Harvey MJ, De Fabritiis G (2009) An implementation of the smooth particle Mesh Ewald method on GPU hardware. J Chem Theory Comput 5(9):2371-2377
    • (2009) J Chem Theory Comput , vol.5 , Issue.9 , pp. 2371-2377
    • Harvey, M.J.1    De Fabritiis, G.2
  • 27
    • 61449116964 scopus 로고    scopus 로고
    • Fast, accurate and shift-varying line projections for iterative reconstruction using the GPU
    • 10.1109/TMI.2008.2006518
    • Guillem P, Garry C, Olcott PD et al (2009) Fast, accurate and shift-varying line projections for iterative reconstruction using the GPU. IEEE Trans Med Imaging 28(3):435-445
    • (2009) IEEE Trans Med Imaging , vol.28 , Issue.3 , pp. 435-445
    • Guillem, P.1    Garry, C.2    Olcott, P.D.3
  • 30
    • 84858955736 scopus 로고    scopus 로고
    • A new particle swarm optimization algorithm for fuzzy optimization of armored vehicle scheme design
    • 10.1007/s10489-012-0345-0
    • Wang K, Zheng YJ (2012) A new particle swarm optimization algorithm for fuzzy optimization of armored vehicle scheme design. Appl Intell 37(4):520-526
    • (2012) Appl Intell , vol.37 , Issue.4 , pp. 520-526
    • Wang, K.1    Zheng, Y.J.2
  • 31
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • 10.2307/2346830 0447.62062
    • Hartigan JA, Wong MA (1979) A k-means clustering algorithm. Appl Stat 28(1):100-108
    • (1979) Appl Stat , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 32
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • Springer Berlin 10.1007/978-3-642-76153-9-28
    • Bridle JS (1990) Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In: Neuralcomputing: algorithms, architectures and applications. Springer, Berlin, pp 227-236
    • (1990) Neuralcomputing: Algorithms, Architectures and Applications , pp. 227-236
    • Bridle, J.S.1
  • 33
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • 0900.68358
    • Dietterich TG, Bakiri G (1995) Solving multiclass learning problems via error-correcting output codes. J Artif Intell Res 2(1):263-286
    • (1995) J Artif Intell Res , vol.2 , Issue.1 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 34
    • 51449118065 scopus 로고    scopus 로고
    • A performance study of general-purpose applications on graphics processors using CUDA
    • 10.1016/j.jpdc.2008.05.014
    • Che S, Boyer M, Meng J, Tarjan D, Sheaffer JW, Skadron K (2008) A performance study of general-purpose applications on graphics processors using CUDA. J Parallel Distrib Comput 68(10):1370-1380
    • (2008) J Parallel Distrib Comput , vol.68 , Issue.10 , pp. 1370-1380
    • Che, S.1    Boyer, M.2    Meng, J.3    Tarjan, D.4    Sheaffer, J.W.5    Skadron, K.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.