메뉴 건너뛰기




Volumn 31, Issue 3, 2012, Pages 433-454

Improvement of neural network classifier using floating centroids

Author keywords

Classification; Floating Centroids Method; Neural networks

Indexed keywords


EID: 84860917481     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-011-0410-8     Document Type: Article
Times cited : (34)

References (23)
  • 1
    • 33744584654 scopus 로고
    • Introduction of decision trees
    • Qinlan JR (1986) Introduction of decision trees. Mach Learn 1(1): 81-106.
    • (1986) Mach Learn , vol.1 , Issue.1 , pp. 81-106
    • Qinlan, J.R.1
  • 2
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund Y (1995) Boosting a weak learning algorithm by majority. Inf Comput 121(2): 256-285.
    • (1995) Inf Comput , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 3
  • 4
    • 45849130515 scopus 로고    scopus 로고
    • A reduced and comprehensible polynomial neural network for classification
    • Misraa BB, Dehurib S, Dashc PK, Pandad G (2008) A reduced and comprehensible polynomial neural network for classification. Pattern Recognit Lett 29(12): 1705-1712.
    • (2008) Pattern Recognit Lett , vol.29 , Issue.12 , pp. 1705-1712
    • Misraa, B.B.1    Dehurib, S.2    Dashc, P.K.3    Pandad, G.4
  • 5
    • 22844434823 scopus 로고    scopus 로고
    • Classification methodologies of multilayer perceptrons with sigmoid activation functions
    • Daqi G, Yan J (2005) Classification methodologies of multilayer perceptrons with sigmoid activation functions. Pattern Recognit 38(10): 1469-1482.
    • (2005) Pattern Recognit , vol.38 , Issue.10 , pp. 1469-1482
    • Daqi, G.1    Yan, J.2
  • 6
    • 33750331605 scopus 로고    scopus 로고
    • Feature selection and classification using flexible neural tree
    • Chen Y, Abraham A, Yang Bo (2006) Feature selection and classification using flexible neural tree. Neurocomputing 70(1-3): 305-313.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 305-313
    • Chen, Y.1    Abraham, A.2    Yang, B.3
  • 8
    • 0037230867 scopus 로고    scopus 로고
    • Efficient computations for large least square support vector machine classifiers
    • Chua YS (2003) Efficient computations for large least square support vector machine classifiers. Pattern Recognit Lett 24(1-3): 75-80.
    • (2003) Pattern Recognit Lett , vol.24 , Issue.1-3 , pp. 75-80
    • Chua, Y.S.1
  • 9
    • 84856540895 scopus 로고    scopus 로고
    • Improving SVM classification on imbalanced time series data sets with ghost points
    • (in print)
    • Koknar-Tezel S, Latecki LJ (2010) Improving SVM classification on imbalanced time series data sets with ghost points. Knowl Inf Syst (in print).
    • (2010) Knowl Inf Syst
    • Koknar-Tezel, S.1    Latecki, L.J.2
  • 10
    • 77957583037 scopus 로고    scopus 로고
    • Boosting support vector machines for imbalanced data sets
    • (in print)
    • Benjamin XW, Japkowicz N (2010) Boosting support vector machines for imbalanced data sets. Knowl Inf Syst (in print).
    • (2010) Knowl Inf Syst
    • Benjamin, X.W.1    Japkowicz, N.2
  • 12
    • 34247154511 scopus 로고    scopus 로고
    • Cancer classification using ensemble of neural networks with multiple significant gene subsets
    • Cho SB, Won H-H (2007) Cancer classification using ensemble of neural networks with multiple significant gene subsets. Appl Intell 26(3): 243-250.
    • (2007) Appl Intell , vol.26 , Issue.3 , pp. 243-250
    • Cho, S.B.1    Won, H.-H.2
  • 13
    • 0037633244 scopus 로고    scopus 로고
    • On the classification of multispectral satellite images using the multilayer perceptron
    • Venkatesh YV, Kumar Raja S (2003) On the classification of multispectral satellite images using the multilayer perceptron. Pattern Recognit 36(9): 2161-2175.
    • (2003) Pattern Recognit , vol.36 , Issue.9 , pp. 2161-2175
    • Venkatesh, Y.V.1    Kumar Raja, S.2
  • 14
    • 33644541524 scopus 로고    scopus 로고
    • Call classification using recurrent neural networks, support vector machines and finite state automata
    • Garfield S, Wermter S (2006) Call classification using recurrent neural networks, support vector machines and finite state automata. Knowl Inf Syst 9(2): 131-156.
    • (2006) Knowl Inf Syst , vol.9 , Issue.2 , pp. 131-156
    • Garfield, S.1    Wermter, S.2
  • 15
    • 67650003712 scopus 로고    scopus 로고
    • Location determination of mobile devices for an indoor WLAN application using a neural network
    • Tsai C-Y, Chou S-Y, Lin S-W, Wang W-H (2009) Location determination of mobile devices for an indoor WLAN application using a neural network. Knowl Inf Syst 20(1): 81-93.
    • (2009) Knowl Inf Syst , vol.20 , Issue.1 , pp. 81-93
    • Tsai, C.-Y.1    Chou, S.-Y.2    Lin, S.-W.3    Wang, W.-H.4
  • 16
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • Springer
    • Bridle JS (1990) Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. Neuralcomputing: algorithms, architectures and applications, Springer, pp 227-236.
    • (1990) Neuralcomputing: Algorithms, architectures and applications , pp. 227-236
    • Bridle, J.S.1
  • 17
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich TG, Bakiri G (1995) Solving multiclass learning problems via error-correcting output codes. J Artif Intell Res 2(1): 263-286.
    • (1995) J Artif Intell Res , vol.2 , Issue.1 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 19
    • 0001138328 scopus 로고
    • A k-means clustering algorithm
    • Hartigan JA, Wong MA (1979) A k-means clustering algorithm. Applied Stat 28(1): 100-108.
    • (1979) Applied Stat , vol.28 , Issue.1 , pp. 100-108
    • Hartigan, J.A.1    Wong, M.A.2
  • 21
    • 70350539300 scopus 로고    scopus 로고
    • Parameter determination and feature selection for back-propagation network by particle swarm optimization
    • Lin S-W, Chen S-C, Wu W-J, Chen C-H (2009) Parameter determination and feature selection for back-propagation network by particle swarm optimization. Knowl Inf Syst 21(2): 249-266.
    • (2009) Knowl Inf Syst , vol.21 , Issue.2 , pp. 249-266
    • Lin, S.-W.1    Chen, S.-C.2    Wu, W.-J.3    Chen, C.-H.4
  • 22
    • 77954957899 scopus 로고    scopus 로고
    • A heuristic method for learning Bayesian networks using discrete particle swarm optimization
    • Wang T, Yang J (2010) A heuristic method for learning Bayesian networks using discrete particle swarm optimization. Knowl Inf Syst 24(2): 269-281.
    • (2010) Knowl Inf Syst , vol.24 , Issue.2 , pp. 269-281
    • Wang, T.1    Yang, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.