메뉴 건너뛰기




Volumn 34, Issue 2, 2011, Pages 117-131

Neuro-logistic models based on evolutionary generalized radial basis function for the microarray gene expression classification problem

Author keywords

Classification; Evolutionary algorithm; Generalized radial basis function; Logistic regression; Microarray gene expression; Neural networks

Indexed keywords

CLASSIFICATION MODELS; DATA SETS; FILTER ALGORITHM; GENE EXPRESSION DETECTION; HIGH-DIMENSIONAL; INPUT VARIABLES; LOGISTIC REGRESSIONS; MICROARRAY CLASSIFICATION; MICROARRAY DATASET; MICROARRAY GENE EXPRESSION; NON-PARAMETRIC STATISTICAL TESTS; RADIAL BASIS FUNCTIONS; REFLECTION ANALYSIS; TWO-STAGE ALGORITHM;

EID: 80053574083     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-011-9187-8     Document Type: Article
Times cited : (10)

References (33)
  • 2
    • 77955303876 scopus 로고    scopus 로고
    • A lamarckian hybrid of differential evolution and conjugate gradients for neural network training
    • 10.1007/s11063-010-9141-1
    • K Bandurski W Kwedlo 2010 A lamarckian hybrid of differential evolution and conjugate gradients for neural network training Neural Process Lett 32 1 31 44 10.1007/s11063-010-9141-1
    • (2010) Neural Process Lett , vol.32 , Issue.1 , pp. 31-44
    • Bandurski, K.1    Kwedlo, W.2
  • 6
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • 0825.62593 10.2307/2347628
    • S le Cessie J van Houwelingen 1992 Ridge estimators in logistic regression Appl Stat 41 1 191 201 0825.62593 10.2307/2347628
    • (1992) Appl Stat , vol.41 , Issue.1 , pp. 191-201
    • Le Cessie, S.1    Van Houwelingen, J.2
  • 8
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J Demšar 2006 Statistical comparisons of classifiers over multiple data sets J Mach Learn Res 7 1 30 2274360 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 9
    • 79951853422 scopus 로고    scopus 로고
    • Evolutionary q-gaussian radial basis function neural network to determine the microbial growth/no growth interface of Staphylococcus aureus
    • 10.1016/j.asoc.2010.11.027
    • F Fernández-Navarro C Hervás-Martínez M Cruz PA Gutierrez A Valero 2011 Evolutionary q-gaussian radial basis function neural network to determine the microbial growth/no growth interface of Staphylococcus aureus Appl Soft Comput 11 3 3012 3020 10.1016/j.asoc.2010.11.027
    • (2011) Appl Soft Comput , vol.11 , Issue.3 , pp. 3012-3020
    • Fernández-Navarro, F.1    Hervás-Martínez, C.2    Cruz, M.3    Gutierrez, P.A.4    Valero, A.5
  • 13
    • 38049173743 scopus 로고    scopus 로고
    • High dimentional data analisis, from optimal metric to feature selection
    • Francois D (2008) High dimentional data analisis, from optimal metric to feature selection. In: Seeking on right metric. VDM Verlag, Saarbrucken, pp 54-55
    • (2008) Seeking on Right Metric. VDM Verlag, Saarbrucken , pp. 54-55
    • Francois, D.1
  • 14
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • 0063.01455 10.1214/aoms/1177731944
    • M Friedman 1940 A comparison of alternative tests of significance for the problem of m rankings Ann Math Stat 11 1 86 92 0063.01455 10.1214/aoms/ 1177731944
    • (1940) Ann Math Stat , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 15
    • 78650703056 scopus 로고    scopus 로고
    • Sparse rbf networks with multi-kernels
    • 10.1007/s11063-010-9153-x
    • L Fu M Zhang H Li 2010 Sparse rbf networks with multi-kernels Neural Process Lett 32 3 235 247 10.1007/s11063-010-9153-x
    • (2010) Neural Process Lett , vol.32 , Issue.3 , pp. 235-247
    • Fu, L.1    Zhang, M.2    Li, H.3
  • 19
    • 33749267856 scopus 로고    scopus 로고
    • Logistic regression using covariates obtained by product-unit neural network models
    • DOI 10.1016/j.patcog.2006.06.003, PII S0031320306002755
    • C Hervánez F Martínez-Estudillo 2007 Logistic regression using covariates obtained by product-unit neural network models Pattern Recognit 40 1 52 64 10.1016/j.patcog.2006.06.003 (Pubitemid 44486291)
    • (2007) Pattern Recognition , vol.40 , Issue.1 , pp. 52-64
    • Hervas-Martinez, C.1    Martinez-Estudillo, F.2
  • 20
    • 51049123604 scopus 로고    scopus 로고
    • Multilogistic regression by means of evolutionary product-unit neural networks
    • 10.1016/j.neunet.2007.12.052
    • C Hervás-Martínez FJ Martínez-Estudillo M Carbonero-Ruz 2008 Multilogistic regression by means of evolutionary product-unit neural networks Neural Netw 21 7 951 961 10.1016/j.neunet.2007.12. 052
    • (2008) Neural Netw , vol.21 , Issue.7 , pp. 951-961
    • Hervás-Martínez, C.1    Martínez-Estudillo, F.J.2    Carbonero-Ruz, M.3
  • 21
    • 0036608878 scopus 로고    scopus 로고
    • RBF network methods for face detection and attentional frames
    • DOI 10.1023/A:1015743231018
    • AJ Howell H Buxton 2002 RBF network methods for face detection and attentional frames Neural Process Lett 15 3 197 211 1008.68754 10.1023/A:1015743231018 (Pubitemid 34720965)
    • (2002) Neural Processing Letters , vol.15 , Issue.3 , pp. 197-211
    • Howell, A.J.1    Buxton, H.2
  • 22
    • 21244500957 scopus 로고    scopus 로고
    • Logistic model trees
    • DOI 10.1007/s10994-005-0466-3
    • N Landwehr M Hall E Frank 2005 Logistic model trees Mach Learn 59 1-2 161 205 1101.68767 10.1007/s10994-005-0466-3 (Pubitemid 40890416)
    • (2005) Machine Learning , vol.59 , Issue.1-2 , pp. 161-205
    • Landwehr, N.1    Hall, M.2    Frank, E.3
  • 23
    • 78650720100 scopus 로고    scopus 로고
    • Melt index prediction by RBF neural network optimized with an MPSO-SA hybrid algorithm
    • 10.1016/j.neucom.2010.09.019
    • J Li X Liu 2011 Melt index prediction by RBF neural network optimized with an MPSO-SA hybrid algorithm Neurocomputing 74 5 735 740 10.1016/j.neucom.2010.09.019
    • (2011) Neurocomputing , vol.74 , Issue.5 , pp. 735-740
    • Li, J.1    Liu, X.2
  • 24
    • 25444469066 scopus 로고    scopus 로고
    • Performance evaluation of GAP-RBF network in channel equalization
    • DOI 10.1007/s11063-005-6799-x
    • M Li G Huang P Saratchandran N Sundararajan 2005 Performance evaluation of gap-rbf network in channel equalization Neural Process Lett 22 2 223 233 1061.42021 10.1007/s11063-005-6799-x (Pubitemid 41367338)
    • (2005) Neural Processing Letters , vol.22 , Issue.2 , pp. 223-233
    • Li, M.-B.1    Huang, G.-B.2    Saratchandran, P.3    Sundararajan, N.4
  • 31
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • Fawcett T, Mishra AAAI Press, San Francisco
    • Yu L, Liu H (2003) Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Fawcett T, Mishra NICML. AAAI Press, San Francisco, pp 856-863
    • (2003) NICML , pp. 856-863
    • Yu, L.1    Liu, H.2
  • 32
    • 62649132781 scopus 로고    scopus 로고
    • Ml-rbf: Rbf neural networks for multi-label learning
    • 10.1007/s11063-009-9095-3
    • M Zhang 2009 Ml-rbf: Rbf neural networks for multi-label learning Neural Process Lett 29 2 61 74 10.1007/s11063-009-9095-3
    • (2009) Neural Process Lett , vol.29 , Issue.2 , pp. 61-74
    • Zhang, M.1
  • 33
    • 31444436020 scopus 로고    scopus 로고
    • Adapting RBF neural networks to multi-instance learning
    • DOI 10.1007/s11063-005-2192-z
    • ML Zhang ZH Zhou 2006 Adapting RBF neural networks to multi-instance learning Neural Process Lett 23 1 1 26 10.1007/s11063-005-2192-z (Pubitemid 43152946)
    • (2006) Neural Processing Letters , vol.23 , Issue.1 , pp. 1-26
    • Zhang, M.-L.1    Zhou, Z.-H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.