메뉴 건너뛰기




Volumn 38, Issue 10, 2005, Pages 1469-1482

Classification methodologies of multilayer perceptrons with sigmoid activation functions

Author keywords

Empirical formula; Generalization; Hidden nodes; Multilayer perceptrons; Sigmoid activation functions

Indexed keywords

DECISION THEORY; MATHEMATICAL TRANSFORMATIONS; MATRIX ALGEBRA; MULTILAYER NEURAL NETWORKS; PATTERN RECOGNITION; PROBLEM SOLVING;

EID: 22844434823     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2005.03.024     Document Type: Article
Times cited : (49)

References (28)
  • 1
    • 0024771475 scopus 로고
    • Pattern classification using neural networks
    • R.P. Lippmann Pattern classification using neural networks IEEE Commun. Mag. 11 1989 47 64
    • (1989) IEEE Commun. Mag. , vol.11 , pp. 47-64
    • Lippmann, R.P.1
  • 2
    • 0032853385 scopus 로고    scopus 로고
    • Derivation of the multilayer perceptron weight constraints for direct network interpretation and knowledge discovery
    • M.L. Vaughn Derivation of the multilayer perceptron weight constraints for direct network interpretation and knowledge discovery Neural Networks 12 1999 1259 1271
    • (1999) Neural Networks , vol.12 , pp. 1259-1271
    • Vaughn, M.L.1
  • 3
    • 0032029357 scopus 로고    scopus 로고
    • Multilayer neural networks and Bayes decision theory
    • K. Funahashi Multilayer neural networks and Bayes decision theory Neural Networks 11 1998 209 213
    • (1998) Neural Networks , vol.11 , pp. 209-213
    • Funahashi, K.1
  • 4
    • 0025507332 scopus 로고
    • On the decision regions of multilayer perceptrons
    • G.J. Gibson, and C.F.N. Cowan On the decision regions of multilayer perceptrons Proc. IEEE 78 9 1990 1590 1594
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1590-1594
    • Gibson, G.J.1    Cowan, C.F.N.2
  • 6
    • 0002748218 scopus 로고
    • How neural nets work
    • D. Anderson American Institute of Physics New York
    • A. Lapedes, and R. Farber How neural nets work D. Anderson Neural Information Processing Systems 1988 American Institute of Physics New York 442 456
    • (1988) Neural Information Processing Systems , pp. 442-456
    • Lapedes, A.1    Farber, R.2
  • 7
    • 0025792215 scopus 로고
    • Bounds on the number of hidden neurons in multilayer perceptrons
    • S.C. Huang, and Y.F. Huang Bounds on the number of hidden neurons in multilayer perceptrons IEEE Trans. Neural Networks 2 1 1991 47 55
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.1 , pp. 47-55
    • Huang, S.C.1    Huang, Y.F.2
  • 8
    • 0034187311 scopus 로고    scopus 로고
    • Classification ability of single hidden layer feedforward neural networks
    • G.B. Huang, Y.Q. Chen, and H.A. Babri Classification ability of single hidden layer feedforward neural networks IEEE Trans. Neural Networks 11 3 2000 799 801
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.3 , pp. 799-801
    • Huang, G.B.1    Chen, Y.Q.2    Babri, H.A.3
  • 9
    • 0002540180 scopus 로고
    • Learning to tell two spirals apart
    • San Mateo, CA, Morgan Kauffman
    • K.J. Lang, M.J. Witbrock, Learning to tell two spirals apart, Proc. Connect. Model Summer School, San Mateo, CA, Morgan Kauffman, 1989, pp. 52-58.
    • (1989) Proc. Connect. Model Summer School , pp. 52-58
    • Lang, K.J.1    Witbrock, M.J.2
  • 10
    • 0030817465 scopus 로고    scopus 로고
    • Circular backpropagation networks for classifications
    • S. Ridella, S. Rovetta, and R. Zunino Circular backpropagation networks for classifications IEEE Trans. Neural Networks 8 1 1998 84 97
    • (1998) IEEE Trans. Neural Networks , vol.8 , Issue.1 , pp. 84-97
    • Ridella, S.1    Rovetta, S.2    Zunino, R.3
  • 11
    • 0035989190 scopus 로고    scopus 로고
    • On the capabilities of neural networks using limited precision weights
    • S. Draghici On the capabilities of neural networks using limited precision weights Neural Networks 15 2002 395 414
    • (2002) Neural Networks , vol.15 , pp. 395-414
    • Draghici, S.1
  • 12
    • 0023843391 scopus 로고
    • Analysis of hidden units in a layered network trained to classify sonar targets
    • R.P. Gormann, and T.J. Sejnowski Analysis of hidden units in a layered network trained to classify sonar targets Neural Networks 1 1988 75 89
    • (1988) Neural Networks , vol.1 , pp. 75-89
    • Gormann, R.P.1    Sejnowski, T.J.2
  • 13
    • 0032204147 scopus 로고    scopus 로고
    • Are multilayer perceptrons adequate for pattern recognition and verification?
    • M. Gori, and F. Scarselli Are multilayer perceptrons adequate for pattern recognition and verification? IEEE Trans. Pattern Anal. Mech. Intell. 20 11 1998 851 859
    • (1998) IEEE Trans. Pattern Anal. Mech. Intell. , vol.20 , Issue.11 , pp. 851-859
    • Gori, M.1    Scarselli, F.2
  • 14
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds of the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • G.B. Huang, and H.A. Babri Upper bounds of the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions IEEE Trans. Neural Networks 9 1 1998 224 228
    • (1998) IEEE Trans. Neural Networks , vol.9 , Issue.1 , pp. 224-228
    • Huang, G.B.1    Babri, H.A.2
  • 15
    • 0037279487 scopus 로고    scopus 로고
    • A novel training scheme for multilayered perceptrons to realize proper generalization and incremental learning
    • D. Chakraborty, and N.R. Pal A novel training scheme for multilayered perceptrons to realize proper generalization and incremental learning IEEE Trans. Neural Networks 14 1 2003 1 14
    • (2003) IEEE Trans. Neural Networks , vol.14 , Issue.1 , pp. 1-14
    • Chakraborty, D.1    Pal, N.R.2
  • 16
    • 0025508916 scopus 로고
    • A statistical approach to learning and generalization in layered neural networks
    • E. Levin, N. Tishby, and S.A. Solla A statistical approach to learning and generalization in layered neural networks Proc. IEEE 78 10 1990 1568 1574
    • (1990) Proc. IEEE , vol.78 , Issue.10 , pp. 1568-1574
    • Levin, E.1    Tishby, N.2    Solla, S.A.3
  • 17
    • 0000206819 scopus 로고
    • A mathematical theory of generalization
    • D.H. Wolpert A mathematical theory of generalization Complex System 4 1990 151 249
    • (1990) Complex System , vol.4 , pp. 151-249
    • Wolpert, D.H.1
  • 19
    • 0036555952 scopus 로고    scopus 로고
    • Influences of variable scales and activation functions on the performances of multilayer feedforward neural networks
    • D. Gao, and G. Yang Influences of variable scales and activation functions on the performances of multilayer feedforward neural networks Pattern Recognition 36 4 2003 869 878
    • (2003) Pattern Recognition , vol.36 , Issue.4 , pp. 869-878
    • Gao, D.1    Yang, G.2
  • 20
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V.N. Vapnik An overview of statistical learning theory IEEE Trans. Neural Networks 10 5 1999 988 999
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 21
    • 0032164765 scopus 로고    scopus 로고
    • A new neural network for cluster-detection-and-labeling
    • T. Elloft, and R.J.P. Defigueiredo A new neural network for cluster-detection-and-labeling IEEE Trans. Neural Networks 9 5 1998 1021 1035
    • (1998) IEEE Trans. Neural Networks , vol.9 , Issue.5 , pp. 1021-1035
    • Elloft, T.1    Defigueiredo, R.J.P.2
  • 22
    • 0032690356 scopus 로고    scopus 로고
    • Reformulated radial basis neural networks trained by gradient descent
    • N.B. Karayiannis Reformulated radial basis neural networks trained by gradient descent IEEE Trans. Neural Networks 10 3 1999 657 671
    • (1999) IEEE Trans. Neural Networks , vol.10 , Issue.3 , pp. 657-671
    • Karayiannis, N.B.1
  • 23
    • 22844440037 scopus 로고    scopus 로고
    • http://www.ics.uci.edu/~mlearn
    • ftp://ftp.ics.uci.edu/pub/mechine-learning-databases or http://www.ics.uci.edu/~mlearn.
  • 25
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • R.P. Lippmann An introduction to computing with neural nets IEEE ASSP Magazine 4 1987 4 22
    • (1987) IEEE ASSP Magazine , vol.4 , pp. 4-22
    • Lippmann, R.P.1
  • 26
    • 0023515080 scopus 로고
    • Counterpropagation networks
    • R.H. Nielsen Counterpropagation networks Appl. Opt. 26 1987 4979 4984
    • (1987) Appl. Opt. , vol.26 , pp. 4979-4984
    • Nielsen, R.H.1
  • 28
    • 0032164306 scopus 로고    scopus 로고
    • An optimization method for the topological structures of feedforward multi-layer neural networks
    • G. Daqi, and W. Shouyi An optimization method for the topological structures of feedforward multi-layer neural networks Pattern Recognition 31 9 1998 1337 1342
    • (1998) Pattern Recognition , vol.31 , Issue.9 , pp. 1337-1342
    • Daqi, G.1    Shouyi, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.