-
1
-
-
0014198263
-
Biochemical adaptations in muscle: Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle
-
Holloszy JO. Biochemical adaptations in muscle: effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;10(242):2278-82.
-
(1967)
J Biol Chem
, vol.10
, Issue.242
, pp. 2278-2282
-
-
Holloszy, J.O.1
-
2
-
-
84855611491
-
Mitochondrial dysregulation in the pathogenesis of diabetes: Potential for mitochondrial biogenesis-mediated interventions
-
10.1155/2012/642038
-
Joseph A-M, Joanisse DR, Baillot RG, et al. Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabetes Res. 2012;2012:1-16.
-
(2012)
Exp Diabetes Res
, vol.2012
, pp. 1-16
-
-
Joseph, A.-M.1
Joanisse, D.R.2
Baillot, R.G.3
-
3
-
-
84879533714
-
Mitochondrial plasticity in obesity and diabetes mellitus
-
10.1089/ars.2012.4910
-
Jelenik T, Roden M. Mitochondrial plasticity in obesity and diabetes mellitus. Antioxid Redox Signal. 2013;20(19):258-68.
-
(2013)
Antioxid Redox Signal
, vol.20
, Issue.19
, pp. 258-268
-
-
Jelenik, T.1
Roden, M.2
-
4
-
-
77956271188
-
Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults
-
2875392 20520725 10.1371/journal.pone.0010778
-
Safdar A, Hamadeh MJ, Kaczor JJ, et al. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS ONE. 2010;5:e10778.
-
(2010)
PLoS ONE
, vol.5
, pp. 10778
-
-
Safdar, A.1
Hamadeh, M.J.2
Kaczor, J.J.3
-
5
-
-
79961204091
-
P53, aerobic metabolism, and cancer
-
1:CAS:528:DC%2BC3MXhtVSitLfE 20919942 10.1089/ars.2010.3650
-
Lago CU, Sung HJ, Ma W, et al. p53, aerobic metabolism, and cancer. Antioxid Redox Signal. 2011;15(15):1739-48.
-
(2011)
Antioxid Redox Signal
, vol.15
, Issue.15
, pp. 1739-1748
-
-
Lago, C.U.1
Sung, H.J.2
Ma, W.3
-
6
-
-
9244229559
-
Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise
-
1:CAS:528:DC%2BD2MXivFKr 15220302 10.1152/japplphysiol.00517.2004
-
Leblanc PJ, Howarth KR, Gibala MJ, et al. Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise. J Appl Physiol. 2004;97:2148-53.
-
(2004)
J Appl Physiol
, vol.97
, pp. 2148-2153
-
-
Leblanc, P.J.1
Howarth, K.R.2
Gibala, M.J.3
-
7
-
-
0343621486
-
Limiting factors for maximum oxygen uptake and determinants of endurance performance
-
10647532
-
Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70-84.
-
(2000)
Med Sci Sports Exerc
, vol.32
, pp. 70-84
-
-
Bassett, D.R.1
Howley, E.T.2
-
8
-
-
0017701734
-
Training induced adaptation of skeletal muscle and metabolism during submaximal exercise
-
1:CAS:528:DyaE2sXls1Gitb8%3D 903909
-
Henriksson J. Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J Physiol. 1977;270:661-75.
-
(1977)
J Physiol
, vol.270
, pp. 661-675
-
-
Henriksson, J.1
-
9
-
-
0036128097
-
Adaptations of skeletal muscle to prolonged, intense endurance training
-
1:CAS:528:DC%2BD38XitVSqs7c%3D 11906487 10.1046/j.1440-1681.2002.03623.x
-
Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol. 2002;29:218-22.
-
(2002)
Clin Exp Pharmacol Physiol
, vol.29
, pp. 218-222
-
-
Hawley, J.A.1
-
10
-
-
80054956371
-
Regulation of mitochondrial biogenesis and GLUT4 expression by exercise
-
23737207
-
Holloszy JO. Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr Physiol. 2011;1:921-40.
-
(2011)
Compr Physiol
, vol.1
, pp. 921-940
-
-
Holloszy, J.O.1
-
11
-
-
78649710608
-
Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle
-
10.1113/jphysiol.2010.199448
-
Perry CGR, Lally J, Holloway GP, et al. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010;1(588):4795-810.
-
(2010)
J Physiol
, vol.1
, Issue.588
, pp. 4795-4810
-
-
Perry, C.G.R.1
Lally, J.2
Holloway, G.P.3
-
12
-
-
34548371839
-
The molecular bases of training adaptation
-
17722947 10.2165/00007256-200737090-00001
-
Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37:737-63.
-
(2007)
Sports Med
, vol.37
, pp. 737-763
-
-
Coffey, V.G.1
Hawley, J.A.2
-
13
-
-
33646807832
-
The P53 pathway: What questions remain to be explored?
-
1:CAS:528:DC%2BD28Xks1Ortbw%3D 16557269 10.1038/sj.cdd.4401910
-
Levine AJ, Hu W, Feng Z. The P53 pathway: what questions remain to be explored? Cell Death Differ. 2006;13:1027-36.
-
(2006)
Cell Death Differ
, vol.13
, pp. 1027-1036
-
-
Levine, A.J.1
Hu, W.2
Feng, Z.3
-
14
-
-
33745149291
-
P53 regulates mitochondrial respiration
-
10.1126/science.1126863
-
Matoba S, Kang J-G, Patino WD, et al. p53 regulates mitochondrial respiration. Science. 2006;16(312):1650-3.
-
(2006)
Science
, vol.16
, Issue.312
, pp. 1650-1653
-
-
Matoba, S.1
Kang, J.-G.2
Patino, W.D.3
-
15
-
-
70349655709
-
P53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content
-
10.1161/CIRCRESAHA.109.205310
-
Park J-Y, Wang P-Y, Matsumoto T, et al. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ Res. 2009;25(105):705-12.
-
(2009)
Circ Res
, vol.25
, Issue.105
, pp. 705-712
-
-
Park, J.-Y.1
Wang, P.-Y.2
Matsumoto, T.3
-
16
-
-
66249089036
-
Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle
-
10.1152/physiolgenomics.90346.2008
-
Saleem A, Adhihetty PJ, Hood DA. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiol Genom. 2009;3(37):58-66.
-
(2009)
Physiol Genom
, vol.3
, Issue.37
, pp. 58-66
-
-
Saleem, A.1
Adhihetty, P.J.2
Hood, D.A.3
-
17
-
-
84859621618
-
Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle
-
1:CAS:528:DC%2BC38XptVaisr0%3D 22267390 10.1152/japplphysiol.01040.2011
-
Bartlett JD, Hwa Joo C, Jeong T-S, et al. Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol. 2012;112:1135-43.
-
(2012)
J Appl Physiol
, vol.112
, pp. 1135-1143
-
-
Bartlett, J.D.1
Hwa Joo, C.2
Jeong, T.-S.3
-
18
-
-
84880746018
-
Acute exercise induces p53 translocation to the mitochondria and promotes a p53-Tfam-mtDNA complex in skeletal muscle
-
1:CAS:528:DC%2BC3sXht1CltrrK 23690562
-
Saleem A, Hood DA. Acute exercise induces p53 translocation to the mitochondria and promotes a p53-Tfam-mtDNA complex in skeletal muscle. J Physiol. 2013;591:3625-36.
-
(2013)
J Physiol
, vol.591
, pp. 3625-3636
-
-
Saleem, A.1
Hood, D.A.2
-
19
-
-
77954070031
-
Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle
-
10.1113/jphysiol.2010.188011
-
Egan B, Carson BP, Garcia-Roves PM, et al. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol. 2010;15(588):1779-90.
-
(2010)
J Physiol
, vol.15
, Issue.588
, pp. 1779-1790
-
-
Egan, B.1
Carson, B.P.2
Garcia-Roves, P.M.3
-
20
-
-
18144386162
-
Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation
-
1:CAS:528:DC%2BD2MXktVKmsLg%3D 15716393
-
Atherton PJ, Babraj J, Smith K, et al. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J. 2005;19:786-8.
-
(2005)
FASEB J
, vol.19
, pp. 786-788
-
-
Atherton, P.J.1
Babraj, J.2
Smith, K.3
-
21
-
-
0345327762
-
Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle
-
10.1113/jphysiol.2003.054171
-
Rose AJ, Hargreaves M. Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. J Physiol. 2003;15(553):303-9.
-
(2003)
J Physiol
, vol.15
, Issue.553
, pp. 303-309
-
-
Rose, A.J.1
Hargreaves, M.2
-
22
-
-
33746256783
-
Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise
-
10.1113/jphysiol.2006.111757
-
Rose AJ, Kiens B, Richter EA. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol. 2006;1(574):889-903.
-
(2006)
J Physiol
, vol.1
, Issue.574
, pp. 889-903
-
-
Rose, A.J.1
Kiens, B.2
Richter, E.A.3
-
23
-
-
30744439347
-
Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans
-
1:CAS:528:DC%2BD28XjsFarsg%3D%3D 16267123
-
Coffey V, Zhong Z, Shield A, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J. 2006;20:190-2.
-
(2006)
FASEB J
, vol.20
, pp. 190-192
-
-
Coffey, V.1
Zhong, Z.2
Shield, A.3
-
24
-
-
57349091231
-
Divergent cell signaling after short-term intensified endurance training in human skeletal muscle
-
1:CAS:528:DC%2BD1cXhsFWgtb%2FO 18827172 10.1152/ajpendo.90428.2008
-
Benziane B, Burton TJ, Scanlan B, et al. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295:E1427-38.
-
(2008)
Am J Physiol Endocrinol Metab
, vol.295
-
-
Benziane, B.1
Burton, T.J.2
Scanlan, B.3
-
25
-
-
75149179137
-
Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen
-
1:CAS:528:DC%2BC3cXivVensbY%3D 19854796 10.1113/expphysiol.2009.049353
-
Yeo WK, McGee SL, et al. Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol. 2010;95:351-8.
-
(2010)
Exp Physiol
, vol.95
, pp. 351-358
-
-
Yeo, W.K.1
McGee, S.L.2
-
26
-
-
0037326196
-
Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): Transcriptional coactivator and metabolic regulator
-
1:CAS:528:DC%2BD3sXhslOgsbo%3D 12588810 10.1210/er.2002-0012
-
Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24:78-90.
-
(2003)
Endocr Rev
, vol.24
, pp. 78-90
-
-
Puigserver, P.1
Spiegelman, B.M.2
-
27
-
-
0037102256
-
Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
-
10.1038/nature00904
-
Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;15(418):797-801.
-
(2002)
Nature
, vol.15
, Issue.418
, pp. 797-801
-
-
Lin, J.1
Wu, H.2
Tarr, P.T.3
-
28
-
-
53649107138
-
PGC-1alpha-mediated regulation of gene expression and metabolism: Implications for nutrition and exercise prescriptions
-
1:CAS:528:DC%2BD1cXht1aqsLvM 18923559 10.1139/H08-074
-
Benton CR, Wright DC, Bonen A. PGC-1alpha-mediated regulation of gene expression and metabolism: implications for nutrition and exercise prescriptions. Appl Physiol Nutr Metab. 2008;33:843-62.
-
(2008)
Appl Physiol Nutr Metab
, vol.33
, pp. 843-862
-
-
Benton, C.R.1
Wright, D.C.2
Bonen, A.3
-
29
-
-
73949099327
-
Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging
-
10.1073/pnas.0911570106
-
Wenz T, Rossi SG, Rotundo RL, et al. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA. 2009;1(106):20405-10.
-
(2009)
Proc Natl Acad Sci USA
, vol.1
, Issue.106
, pp. 20405-20410
-
-
Wenz, T.1
Rossi, S.G.2
Rotundo, R.L.3
-
30
-
-
45149108625
-
Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake
-
1:CAS:528:DC%2BD1cXmsFemt7w%3D 18239076 10.1152/japplphysiol.01231.2007
-
Calvo JA, Daniels TG, Wang X, et al. Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol. 2008;104:1304-12.
-
(2008)
J Appl Physiol
, vol.104
, pp. 1304-1312
-
-
Calvo, J.A.1
Daniels, T.G.2
Wang, X.3
-
31
-
-
10744222588
-
Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: Modulation by p38 MAPK
-
10.1101/gad.1152204
-
Fan M, Rhee J, St-Pierre J, et al. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. Genes Dev. 2004;1(18):278-89.
-
(2004)
Genes Dev
, vol.1
, Issue.18
, pp. 278-289
-
-
Fan, M.1
Rhee, J.2
St-Pierre, J.3
-
32
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
-
10.1073/pnas.0705070104
-
Jäger S, Handschin C, St-Pierre J, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007;17(104):12017-22.
-
(2007)
Proc Natl Acad Sci USA
, vol.17
, Issue.104
, pp. 12017-12022
-
-
Jäger, S.1
Handschin, C.2
St-Pierre, J.3
-
33
-
-
77949856117
-
Acute endurance exercise increases the nuclear abundance of PGC-1alpha in trained human skeletal muscle
-
10.1152/ajpregu.00409.2009
-
Little JP, Safdar A, Cermak N, et al. Acute endurance exercise increases the nuclear abundance of PGC-1alpha in trained human skeletal muscle. Am J Physio Regul Integr Comp Physiol. 2010;22(298):R912-7.
-
(2010)
Am J Physio Regul Integr Comp Physiol
, vol.22
, Issue.298
-
-
Little, J.P.1
Safdar, A.2
Cermak, N.3
-
34
-
-
79953232671
-
Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis
-
10.1074/jbc.M110.211466
-
Safdar A, Little JP, Stokl AJ, et al. Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem. 2011;25(286):10605-17.
-
(2011)
J Biol Chem
, vol.25
, Issue.286
, pp. 10605-10617
-
-
Safdar, A.1
Little, J.P.2
Stokl, A.J.3
-
35
-
-
34547092191
-
Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation
-
1:CAS:528:DC%2BD2sXmvVarsLw%3D 17488713 10.1074/jbc.M611252200
-
Wright D, Geiger P, Han D, et al. Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem. 2007;282(26):18793-9.
-
(2007)
J Biol Chem
, vol.282
, Issue.26
, pp. 18793-18799
-
-
Wright, D.1
Geiger, P.2
Han, D.3
-
36
-
-
10744228606
-
Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle
-
1:CAS:528:DC%2BD3sXpsFagsL0%3D 14633846 10.2337/diabetes.52.12.2874
-
Russell AP, Feilchenfeldt J, Schreiber S, et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. 2003;52:2874-81.
-
(2003)
Diabetes
, vol.52
, pp. 2874-2881
-
-
Russell, A.P.1
Feilchenfeldt, J.2
Schreiber, S.3
-
37
-
-
66349132499
-
Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle
-
1:CAS:528:DC%2BD1MXlvFOgsL8%3D 19265068 10.1152/japplphysiol.00003.2009
-
Morton JP, Croft L, Bartlett JD, et al. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J Appl Physiol. 2009;106:1513-21.
-
(2009)
J Appl Physiol
, vol.106
, pp. 1513-1521
-
-
Morton, J.P.1
Croft, L.2
Bartlett, J.D.3
-
38
-
-
37749021969
-
Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans
-
Burgomaster KA, Howarth KR, Phillips SM, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;1(586):151-60.
-
(2008)
J Physiol
, vol.1
, Issue.586
, pp. 151-160
-
-
Burgomaster, K.A.1
Howarth, K.R.2
Phillips, S.M.3
-
39
-
-
77956798090
-
Regulation of PPARγ coactivator-1α function and expression in muscle: Effect of exercise
-
19 Aug 2010. doi: 10.1155/2010/937123
-
Uguccioni G, D'souza D, Hood DA. Regulation of PPARγ coactivator-1α function and expression in muscle: effect of exercise. PPAR Res. Epub 19 Aug 2010. doi: 10.1155/2010/937123.
-
PPAR Res. Epub
-
-
Uguccioni, G.1
D'Souza, D.2
Hood, D.A.3
-
40
-
-
76749087887
-
Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: Effects of exercise and aging
-
1:CAS:528:DC%2BC3cXitlWisbs%3D 19682549 10.1016/j.bbagen.2009.07.031
-
Ljubicic V, Joseph A-M, Saleem A, et al. Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim Biophys Acta. 2010;1800:223-34.
-
(2010)
Biochim Biophys Acta
, vol.1800
, pp. 223-234
-
-
Ljubicic, V.1
Joseph, A.-M.2
Saleem, A.3
-
41
-
-
80053348143
-
Role of p53 within the regulatory network controlling muscle mitochondrial biogenesis
-
21799424
-
Saleem A, Carter HN, Iqbal S, et al. Role of p53 within the regulatory network controlling muscle mitochondrial biogenesis. Exerc Sport Sci Rev. 2011;39:199-205.
-
(2011)
Exerc Sport Sci Rev
, vol.39
, pp. 199-205
-
-
Saleem, A.1
Carter, H.N.2
Iqbal, S.3
-
42
-
-
84877120137
-
Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: Implications for mitochondrial biogenesis
-
1:CAS:528:DC%2BC3sXlvVKgt7g%3D 23364526 10.1152/ajpregu.00498.2012
-
Bartlett JD, Louhelainen J, Iqbal Z, et al. Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis. Am J Physiol Regul Integr Comp Physiol. 2013;304:R450-8.
-
(2013)
Am J Physiol Regul Integr Comp Physiol
, vol.304
-
-
Bartlett, J.D.1
Louhelainen, J.2
Iqbal, Z.3
-
43
-
-
84862977182
-
Regulation of glucose metabolism by p53: Emerging new roles for the tumor suppressor
-
22248668
-
Madan E, Gogna R, Bhatt M, et al. Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor. Oncotarget. 2011;2:948-57.
-
(2011)
Oncotarget
, vol.2
, pp. 948-957
-
-
Madan, E.1
Gogna, R.2
Bhatt, M.3
-
44
-
-
57349187147
-
Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens
-
1:CAS:528:DC%2BD1cXhsVOqsrbF 18772325 10.1152/japplphysiol.90882.2008
-
Yeo WK, Paton CD, Garnham AP, et al. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105:1462-70.
-
(2008)
J Appl Physiol
, vol.105
, pp. 1462-1470
-
-
Yeo, W.K.1
Paton, C.D.2
Garnham, A.P.3
-
45
-
-
78049530840
-
Training with low muscle glycogen enhances fat metabolism in well-trained cyclists
-
1:CAS:528:DC%2BC3cXhtlWitb%2FO
-
Hulston C, Venables MC, Mann CH, et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sport Exerc. 2010;42:2046-55.
-
(2010)
Med Sci Sport Exerc
, vol.42
, pp. 2046-2055
-
-
Hulston, C.1
Venables, M.C.2
Mann, C.H.3
-
46
-
-
70349459599
-
P53 and metabolism
-
1:CAS:528:DC%2BD1MXhtFentb%2FM 19759539 10.1038/nrc2715
-
Vousden KH, Ryan KM. p53 and metabolism. Nat Rev Cancer. 2009;9:691-700.
-
(2009)
Nat Rev Cancer
, vol.9
, pp. 691-700
-
-
Vousden, K.H.1
Ryan, K.M.2
-
47
-
-
79955751752
-
Metabolic regulation by p53
-
1:CAS:528:DC%2BC3MXitlaqt7w%3D 3043245 21340684 10.1007/s00109-011-0735-5
-
Maddocks ODK, Vousden KH. Metabolic regulation by p53. J Mol Med. 2011;89:237-45.
-
(2011)
J Mol Med
, vol.89
, pp. 237-245
-
-
Maddocks, O.D.K.1
Vousden, K.H.2
-
48
-
-
57349128332
-
Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans
-
1:CAS:528:DC%2BD1cXhsVOqsrfN 18801964 10.1152/japplphysiol.90540.2008
-
Yeo WK, Lessard SJ, Chen Z-P, et al. Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans. J Appl Physiol. 2008;105:1519-26.
-
(2008)
J Appl Physiol
, vol.105
, pp. 1519-1526
-
-
Yeo, W.K.1
Lessard, S.J.2
Chen, Z.-P.3
-
49
-
-
80052193535
-
Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise
-
10.1074/jbc.M111.261685
-
Philp A, Chen A, Lan D, et al. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. J Biol Chem. 2011;2(286):30561-70.
-
(2011)
J Biol Chem
, vol.2
, Issue.286
, pp. 30561-30570
-
-
Philp, A.1
Chen, A.2
Lan, D.3
-
50
-
-
33751009381
-
Regulation of AIF expression by p53
-
1:CAS:528:DC%2BD28XhtF2nsrfN 16729031 10.1038/sj.cdd.4401965
-
Stambolsky P, Weisz L, Shats I, et al. Regulation of AIF expression by p53. Cell Death Differ. 2006;13:2140-9.
-
(2006)
Cell Death Differ
, vol.13
, pp. 2140-2149
-
-
Stambolsky, P.1
Weisz, L.2
Shats, I.3
-
51
-
-
76749157966
-
MiR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway
-
2793031 20062521 10.1371/journal.pgen.1000795
-
Li J, Donath S, Li Y, et al. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet. 2010;6:e1000795.
-
(2010)
PLoS Genet
, vol.6
, pp. 1000795
-
-
Li, J.1
Donath, S.2
Li, Y.3
-
52
-
-
77957270300
-
Mitofusin-2 is a novel direct target of p53
-
10.1016/j.bbrc.2010.08.108
-
Wang W, Cheng X, Lu J, et al. Mitofusin-2 is a novel direct target of p53. Biochem Biophys Res Commun. 2010;1(400):587-92.
-
(2010)
Biochem Biophys Res Commun
, vol.1
, Issue.400
, pp. 587-592
-
-
Wang, W.1
Cheng, X.2
Lu, J.3
|