메뉴 건너뛰기




Volumn 44, Issue 3, 2014, Pages 303-309

The emerging role of p53 in exercise metabolism

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN P53;

EID: 84894620403     PISSN: 01121642     EISSN: 11792035     Source Type: Journal    
DOI: 10.1007/s40279-013-0127-9     Document Type: Review
Times cited : (63)

References (52)
  • 1
    • 0014198263 scopus 로고
    • Biochemical adaptations in muscle: Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle
    • Holloszy JO. Biochemical adaptations in muscle: effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;10(242):2278-82.
    • (1967) J Biol Chem , vol.10 , Issue.242 , pp. 2278-2282
    • Holloszy, J.O.1
  • 2
    • 84855611491 scopus 로고    scopus 로고
    • Mitochondrial dysregulation in the pathogenesis of diabetes: Potential for mitochondrial biogenesis-mediated interventions
    • 10.1155/2012/642038
    • Joseph A-M, Joanisse DR, Baillot RG, et al. Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabetes Res. 2012;2012:1-16.
    • (2012) Exp Diabetes Res , vol.2012 , pp. 1-16
    • Joseph, A.-M.1    Joanisse, D.R.2    Baillot, R.G.3
  • 3
    • 84879533714 scopus 로고    scopus 로고
    • Mitochondrial plasticity in obesity and diabetes mellitus
    • 10.1089/ars.2012.4910
    • Jelenik T, Roden M. Mitochondrial plasticity in obesity and diabetes mellitus. Antioxid Redox Signal. 2013;20(19):258-68.
    • (2013) Antioxid Redox Signal , vol.20 , Issue.19 , pp. 258-268
    • Jelenik, T.1    Roden, M.2
  • 4
    • 77956271188 scopus 로고    scopus 로고
    • Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults
    • 2875392 20520725 10.1371/journal.pone.0010778
    • Safdar A, Hamadeh MJ, Kaczor JJ, et al. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS ONE. 2010;5:e10778.
    • (2010) PLoS ONE , vol.5 , pp. 10778
    • Safdar, A.1    Hamadeh, M.J.2    Kaczor, J.J.3
  • 5
    • 79961204091 scopus 로고    scopus 로고
    • P53, aerobic metabolism, and cancer
    • 1:CAS:528:DC%2BC3MXhtVSitLfE 20919942 10.1089/ars.2010.3650
    • Lago CU, Sung HJ, Ma W, et al. p53, aerobic metabolism, and cancer. Antioxid Redox Signal. 2011;15(15):1739-48.
    • (2011) Antioxid Redox Signal , vol.15 , Issue.15 , pp. 1739-1748
    • Lago, C.U.1    Sung, H.J.2    Ma, W.3
  • 6
    • 9244229559 scopus 로고    scopus 로고
    • Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise
    • 1:CAS:528:DC%2BD2MXivFKr 15220302 10.1152/japplphysiol.00517.2004
    • Leblanc PJ, Howarth KR, Gibala MJ, et al. Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise. J Appl Physiol. 2004;97:2148-53.
    • (2004) J Appl Physiol , vol.97 , pp. 2148-2153
    • Leblanc, P.J.1    Howarth, K.R.2    Gibala, M.J.3
  • 7
    • 0343621486 scopus 로고    scopus 로고
    • Limiting factors for maximum oxygen uptake and determinants of endurance performance
    • 10647532
    • Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70-84.
    • (2000) Med Sci Sports Exerc , vol.32 , pp. 70-84
    • Bassett, D.R.1    Howley, E.T.2
  • 8
    • 0017701734 scopus 로고
    • Training induced adaptation of skeletal muscle and metabolism during submaximal exercise
    • 1:CAS:528:DyaE2sXls1Gitb8%3D 903909
    • Henriksson J. Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J Physiol. 1977;270:661-75.
    • (1977) J Physiol , vol.270 , pp. 661-675
    • Henriksson, J.1
  • 9
    • 0036128097 scopus 로고    scopus 로고
    • Adaptations of skeletal muscle to prolonged, intense endurance training
    • 1:CAS:528:DC%2BD38XitVSqs7c%3D 11906487 10.1046/j.1440-1681.2002.03623.x
    • Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol. 2002;29:218-22.
    • (2002) Clin Exp Pharmacol Physiol , vol.29 , pp. 218-222
    • Hawley, J.A.1
  • 10
    • 80054956371 scopus 로고    scopus 로고
    • Regulation of mitochondrial biogenesis and GLUT4 expression by exercise
    • 23737207
    • Holloszy JO. Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr Physiol. 2011;1:921-40.
    • (2011) Compr Physiol , vol.1 , pp. 921-940
    • Holloszy, J.O.1
  • 11
    • 78649710608 scopus 로고    scopus 로고
    • Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle
    • 10.1113/jphysiol.2010.199448
    • Perry CGR, Lally J, Holloway GP, et al. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010;1(588):4795-810.
    • (2010) J Physiol , vol.1 , Issue.588 , pp. 4795-4810
    • Perry, C.G.R.1    Lally, J.2    Holloway, G.P.3
  • 12
    • 34548371839 scopus 로고    scopus 로고
    • The molecular bases of training adaptation
    • 17722947 10.2165/00007256-200737090-00001
    • Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37:737-63.
    • (2007) Sports Med , vol.37 , pp. 737-763
    • Coffey, V.G.1    Hawley, J.A.2
  • 13
    • 33646807832 scopus 로고    scopus 로고
    • The P53 pathway: What questions remain to be explored?
    • 1:CAS:528:DC%2BD28Xks1Ortbw%3D 16557269 10.1038/sj.cdd.4401910
    • Levine AJ, Hu W, Feng Z. The P53 pathway: what questions remain to be explored? Cell Death Differ. 2006;13:1027-36.
    • (2006) Cell Death Differ , vol.13 , pp. 1027-1036
    • Levine, A.J.1    Hu, W.2    Feng, Z.3
  • 14
    • 33745149291 scopus 로고    scopus 로고
    • P53 regulates mitochondrial respiration
    • 10.1126/science.1126863
    • Matoba S, Kang J-G, Patino WD, et al. p53 regulates mitochondrial respiration. Science. 2006;16(312):1650-3.
    • (2006) Science , vol.16 , Issue.312 , pp. 1650-1653
    • Matoba, S.1    Kang, J.-G.2    Patino, W.D.3
  • 15
    • 70349655709 scopus 로고    scopus 로고
    • P53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content
    • 10.1161/CIRCRESAHA.109.205310
    • Park J-Y, Wang P-Y, Matsumoto T, et al. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ Res. 2009;25(105):705-12.
    • (2009) Circ Res , vol.25 , Issue.105 , pp. 705-712
    • Park, J.-Y.1    Wang, P.-Y.2    Matsumoto, T.3
  • 16
    • 66249089036 scopus 로고    scopus 로고
    • Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle
    • 10.1152/physiolgenomics.90346.2008
    • Saleem A, Adhihetty PJ, Hood DA. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiol Genom. 2009;3(37):58-66.
    • (2009) Physiol Genom , vol.3 , Issue.37 , pp. 58-66
    • Saleem, A.1    Adhihetty, P.J.2    Hood, D.A.3
  • 17
    • 84859621618 scopus 로고    scopus 로고
    • Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle
    • 1:CAS:528:DC%2BC38XptVaisr0%3D 22267390 10.1152/japplphysiol.01040.2011
    • Bartlett JD, Hwa Joo C, Jeong T-S, et al. Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol. 2012;112:1135-43.
    • (2012) J Appl Physiol , vol.112 , pp. 1135-1143
    • Bartlett, J.D.1    Hwa Joo, C.2    Jeong, T.-S.3
  • 18
    • 84880746018 scopus 로고    scopus 로고
    • Acute exercise induces p53 translocation to the mitochondria and promotes a p53-Tfam-mtDNA complex in skeletal muscle
    • 1:CAS:528:DC%2BC3sXht1CltrrK 23690562
    • Saleem A, Hood DA. Acute exercise induces p53 translocation to the mitochondria and promotes a p53-Tfam-mtDNA complex in skeletal muscle. J Physiol. 2013;591:3625-36.
    • (2013) J Physiol , vol.591 , pp. 3625-3636
    • Saleem, A.1    Hood, D.A.2
  • 19
    • 77954070031 scopus 로고    scopus 로고
    • Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle
    • 10.1113/jphysiol.2010.188011
    • Egan B, Carson BP, Garcia-Roves PM, et al. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol. 2010;15(588):1779-90.
    • (2010) J Physiol , vol.15 , Issue.588 , pp. 1779-1790
    • Egan, B.1    Carson, B.P.2    Garcia-Roves, P.M.3
  • 20
    • 18144386162 scopus 로고    scopus 로고
    • Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation
    • 1:CAS:528:DC%2BD2MXktVKmsLg%3D 15716393
    • Atherton PJ, Babraj J, Smith K, et al. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J. 2005;19:786-8.
    • (2005) FASEB J , vol.19 , pp. 786-788
    • Atherton, P.J.1    Babraj, J.2    Smith, K.3
  • 21
    • 0345327762 scopus 로고    scopus 로고
    • Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle
    • 10.1113/jphysiol.2003.054171
    • Rose AJ, Hargreaves M. Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. J Physiol. 2003;15(553):303-9.
    • (2003) J Physiol , vol.15 , Issue.553 , pp. 303-309
    • Rose, A.J.1    Hargreaves, M.2
  • 22
    • 33746256783 scopus 로고    scopus 로고
    • Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise
    • 10.1113/jphysiol.2006.111757
    • Rose AJ, Kiens B, Richter EA. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol. 2006;1(574):889-903.
    • (2006) J Physiol , vol.1 , Issue.574 , pp. 889-903
    • Rose, A.J.1    Kiens, B.2    Richter, E.A.3
  • 23
    • 30744439347 scopus 로고    scopus 로고
    • Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans
    • 1:CAS:528:DC%2BD28XjsFarsg%3D%3D 16267123
    • Coffey V, Zhong Z, Shield A, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J. 2006;20:190-2.
    • (2006) FASEB J , vol.20 , pp. 190-192
    • Coffey, V.1    Zhong, Z.2    Shield, A.3
  • 24
    • 57349091231 scopus 로고    scopus 로고
    • Divergent cell signaling after short-term intensified endurance training in human skeletal muscle
    • 1:CAS:528:DC%2BD1cXhsFWgtb%2FO 18827172 10.1152/ajpendo.90428.2008
    • Benziane B, Burton TJ, Scanlan B, et al. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295:E1427-38.
    • (2008) Am J Physiol Endocrinol Metab , vol.295
    • Benziane, B.1    Burton, T.J.2    Scanlan, B.3
  • 25
    • 75149179137 scopus 로고    scopus 로고
    • Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen
    • 1:CAS:528:DC%2BC3cXivVensbY%3D 19854796 10.1113/expphysiol.2009.049353
    • Yeo WK, McGee SL, et al. Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol. 2010;95:351-8.
    • (2010) Exp Physiol , vol.95 , pp. 351-358
    • Yeo, W.K.1    McGee, S.L.2
  • 26
    • 0037326196 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): Transcriptional coactivator and metabolic regulator
    • 1:CAS:528:DC%2BD3sXhslOgsbo%3D 12588810 10.1210/er.2002-0012
    • Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24:78-90.
    • (2003) Endocr Rev , vol.24 , pp. 78-90
    • Puigserver, P.1    Spiegelman, B.M.2
  • 27
    • 0037102256 scopus 로고    scopus 로고
    • Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres
    • 10.1038/nature00904
    • Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;15(418):797-801.
    • (2002) Nature , vol.15 , Issue.418 , pp. 797-801
    • Lin, J.1    Wu, H.2    Tarr, P.T.3
  • 28
    • 53649107138 scopus 로고    scopus 로고
    • PGC-1alpha-mediated regulation of gene expression and metabolism: Implications for nutrition and exercise prescriptions
    • 1:CAS:528:DC%2BD1cXht1aqsLvM 18923559 10.1139/H08-074
    • Benton CR, Wright DC, Bonen A. PGC-1alpha-mediated regulation of gene expression and metabolism: implications for nutrition and exercise prescriptions. Appl Physiol Nutr Metab. 2008;33:843-62.
    • (2008) Appl Physiol Nutr Metab , vol.33 , pp. 843-862
    • Benton, C.R.1    Wright, D.C.2    Bonen, A.3
  • 29
    • 73949099327 scopus 로고    scopus 로고
    • Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging
    • 10.1073/pnas.0911570106
    • Wenz T, Rossi SG, Rotundo RL, et al. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA. 2009;1(106):20405-10.
    • (2009) Proc Natl Acad Sci USA , vol.1 , Issue.106 , pp. 20405-20410
    • Wenz, T.1    Rossi, S.G.2    Rotundo, R.L.3
  • 30
    • 45149108625 scopus 로고    scopus 로고
    • Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake
    • 1:CAS:528:DC%2BD1cXmsFemt7w%3D 18239076 10.1152/japplphysiol.01231.2007
    • Calvo JA, Daniels TG, Wang X, et al. Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol. 2008;104:1304-12.
    • (2008) J Appl Physiol , vol.104 , pp. 1304-1312
    • Calvo, J.A.1    Daniels, T.G.2    Wang, X.3
  • 31
    • 10744222588 scopus 로고    scopus 로고
    • Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: Modulation by p38 MAPK
    • 10.1101/gad.1152204
    • Fan M, Rhee J, St-Pierre J, et al. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. Genes Dev. 2004;1(18):278-89.
    • (2004) Genes Dev , vol.1 , Issue.18 , pp. 278-289
    • Fan, M.1    Rhee, J.2    St-Pierre, J.3
  • 32
    • 34547545892 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
    • 10.1073/pnas.0705070104
    • Jäger S, Handschin C, St-Pierre J, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007;17(104):12017-22.
    • (2007) Proc Natl Acad Sci USA , vol.17 , Issue.104 , pp. 12017-12022
    • Jäger, S.1    Handschin, C.2    St-Pierre, J.3
  • 33
    • 77949856117 scopus 로고    scopus 로고
    • Acute endurance exercise increases the nuclear abundance of PGC-1alpha in trained human skeletal muscle
    • 10.1152/ajpregu.00409.2009
    • Little JP, Safdar A, Cermak N, et al. Acute endurance exercise increases the nuclear abundance of PGC-1alpha in trained human skeletal muscle. Am J Physio Regul Integr Comp Physiol. 2010;22(298):R912-7.
    • (2010) Am J Physio Regul Integr Comp Physiol , vol.22 , Issue.298
    • Little, J.P.1    Safdar, A.2    Cermak, N.3
  • 34
    • 79953232671 scopus 로고    scopus 로고
    • Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis
    • 10.1074/jbc.M110.211466
    • Safdar A, Little JP, Stokl AJ, et al. Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem. 2011;25(286):10605-17.
    • (2011) J Biol Chem , vol.25 , Issue.286 , pp. 10605-10617
    • Safdar, A.1    Little, J.P.2    Stokl, A.J.3
  • 35
    • 34547092191 scopus 로고    scopus 로고
    • Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation
    • 1:CAS:528:DC%2BD2sXmvVarsLw%3D 17488713 10.1074/jbc.M611252200
    • Wright D, Geiger P, Han D, et al. Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem. 2007;282(26):18793-9.
    • (2007) J Biol Chem , vol.282 , Issue.26 , pp. 18793-18799
    • Wright, D.1    Geiger, P.2    Han, D.3
  • 36
    • 10744228606 scopus 로고    scopus 로고
    • Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle
    • 1:CAS:528:DC%2BD3sXpsFagsL0%3D 14633846 10.2337/diabetes.52.12.2874
    • Russell AP, Feilchenfeldt J, Schreiber S, et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. 2003;52:2874-81.
    • (2003) Diabetes , vol.52 , pp. 2874-2881
    • Russell, A.P.1    Feilchenfeldt, J.2    Schreiber, S.3
  • 37
    • 66349132499 scopus 로고    scopus 로고
    • Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle
    • 1:CAS:528:DC%2BD1MXlvFOgsL8%3D 19265068 10.1152/japplphysiol.00003.2009
    • Morton JP, Croft L, Bartlett JD, et al. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J Appl Physiol. 2009;106:1513-21.
    • (2009) J Appl Physiol , vol.106 , pp. 1513-1521
    • Morton, J.P.1    Croft, L.2    Bartlett, J.D.3
  • 38
    • 37749021969 scopus 로고    scopus 로고
    • Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans
    • Burgomaster KA, Howarth KR, Phillips SM, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;1(586):151-60.
    • (2008) J Physiol , vol.1 , Issue.586 , pp. 151-160
    • Burgomaster, K.A.1    Howarth, K.R.2    Phillips, S.M.3
  • 39
    • 77956798090 scopus 로고    scopus 로고
    • Regulation of PPARγ coactivator-1α function and expression in muscle: Effect of exercise
    • 19 Aug 2010. doi: 10.1155/2010/937123
    • Uguccioni G, D'souza D, Hood DA. Regulation of PPARγ coactivator-1α function and expression in muscle: effect of exercise. PPAR Res. Epub 19 Aug 2010. doi: 10.1155/2010/937123.
    • PPAR Res. Epub
    • Uguccioni, G.1    D'Souza, D.2    Hood, D.A.3
  • 40
    • 76749087887 scopus 로고    scopus 로고
    • Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: Effects of exercise and aging
    • 1:CAS:528:DC%2BC3cXitlWisbs%3D 19682549 10.1016/j.bbagen.2009.07.031
    • Ljubicic V, Joseph A-M, Saleem A, et al. Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim Biophys Acta. 2010;1800:223-34.
    • (2010) Biochim Biophys Acta , vol.1800 , pp. 223-234
    • Ljubicic, V.1    Joseph, A.-M.2    Saleem, A.3
  • 41
    • 80053348143 scopus 로고    scopus 로고
    • Role of p53 within the regulatory network controlling muscle mitochondrial biogenesis
    • 21799424
    • Saleem A, Carter HN, Iqbal S, et al. Role of p53 within the regulatory network controlling muscle mitochondrial biogenesis. Exerc Sport Sci Rev. 2011;39:199-205.
    • (2011) Exerc Sport Sci Rev , vol.39 , pp. 199-205
    • Saleem, A.1    Carter, H.N.2    Iqbal, S.3
  • 42
    • 84877120137 scopus 로고    scopus 로고
    • Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: Implications for mitochondrial biogenesis
    • 1:CAS:528:DC%2BC3sXlvVKgt7g%3D 23364526 10.1152/ajpregu.00498.2012
    • Bartlett JD, Louhelainen J, Iqbal Z, et al. Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis. Am J Physiol Regul Integr Comp Physiol. 2013;304:R450-8.
    • (2013) Am J Physiol Regul Integr Comp Physiol , vol.304
    • Bartlett, J.D.1    Louhelainen, J.2    Iqbal, Z.3
  • 43
    • 84862977182 scopus 로고    scopus 로고
    • Regulation of glucose metabolism by p53: Emerging new roles for the tumor suppressor
    • 22248668
    • Madan E, Gogna R, Bhatt M, et al. Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor. Oncotarget. 2011;2:948-57.
    • (2011) Oncotarget , vol.2 , pp. 948-957
    • Madan, E.1    Gogna, R.2    Bhatt, M.3
  • 44
    • 57349187147 scopus 로고    scopus 로고
    • Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens
    • 1:CAS:528:DC%2BD1cXhsVOqsrbF 18772325 10.1152/japplphysiol.90882.2008
    • Yeo WK, Paton CD, Garnham AP, et al. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105:1462-70.
    • (2008) J Appl Physiol , vol.105 , pp. 1462-1470
    • Yeo, W.K.1    Paton, C.D.2    Garnham, A.P.3
  • 45
    • 78049530840 scopus 로고    scopus 로고
    • Training with low muscle glycogen enhances fat metabolism in well-trained cyclists
    • 1:CAS:528:DC%2BC3cXhtlWitb%2FO
    • Hulston C, Venables MC, Mann CH, et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sport Exerc. 2010;42:2046-55.
    • (2010) Med Sci Sport Exerc , vol.42 , pp. 2046-2055
    • Hulston, C.1    Venables, M.C.2    Mann, C.H.3
  • 46
    • 70349459599 scopus 로고    scopus 로고
    • P53 and metabolism
    • 1:CAS:528:DC%2BD1MXhtFentb%2FM 19759539 10.1038/nrc2715
    • Vousden KH, Ryan KM. p53 and metabolism. Nat Rev Cancer. 2009;9:691-700.
    • (2009) Nat Rev Cancer , vol.9 , pp. 691-700
    • Vousden, K.H.1    Ryan, K.M.2
  • 47
    • 79955751752 scopus 로고    scopus 로고
    • Metabolic regulation by p53
    • 1:CAS:528:DC%2BC3MXitlaqt7w%3D 3043245 21340684 10.1007/s00109-011-0735-5
    • Maddocks ODK, Vousden KH. Metabolic regulation by p53. J Mol Med. 2011;89:237-45.
    • (2011) J Mol Med , vol.89 , pp. 237-245
    • Maddocks, O.D.K.1    Vousden, K.H.2
  • 48
    • 57349128332 scopus 로고    scopus 로고
    • Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans
    • 1:CAS:528:DC%2BD1cXhsVOqsrfN 18801964 10.1152/japplphysiol.90540.2008
    • Yeo WK, Lessard SJ, Chen Z-P, et al. Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans. J Appl Physiol. 2008;105:1519-26.
    • (2008) J Appl Physiol , vol.105 , pp. 1519-1526
    • Yeo, W.K.1    Lessard, S.J.2    Chen, Z.-P.3
  • 49
    • 80052193535 scopus 로고    scopus 로고
    • Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise
    • 10.1074/jbc.M111.261685
    • Philp A, Chen A, Lan D, et al. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. J Biol Chem. 2011;2(286):30561-70.
    • (2011) J Biol Chem , vol.2 , Issue.286 , pp. 30561-30570
    • Philp, A.1    Chen, A.2    Lan, D.3
  • 50
    • 33751009381 scopus 로고    scopus 로고
    • Regulation of AIF expression by p53
    • 1:CAS:528:DC%2BD28XhtF2nsrfN 16729031 10.1038/sj.cdd.4401965
    • Stambolsky P, Weisz L, Shats I, et al. Regulation of AIF expression by p53. Cell Death Differ. 2006;13:2140-9.
    • (2006) Cell Death Differ , vol.13 , pp. 2140-2149
    • Stambolsky, P.1    Weisz, L.2    Shats, I.3
  • 51
    • 76749157966 scopus 로고    scopus 로고
    • MiR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway
    • 2793031 20062521 10.1371/journal.pgen.1000795
    • Li J, Donath S, Li Y, et al. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet. 2010;6:e1000795.
    • (2010) PLoS Genet , vol.6 , pp. 1000795
    • Li, J.1    Donath, S.2    Li, Y.3
  • 52
    • 77957270300 scopus 로고    scopus 로고
    • Mitofusin-2 is a novel direct target of p53
    • 10.1016/j.bbrc.2010.08.108
    • Wang W, Cheng X, Lu J, et al. Mitofusin-2 is a novel direct target of p53. Biochem Biophys Res Commun. 2010;1(400):587-92.
    • (2010) Biochem Biophys Res Commun , vol.1 , Issue.400 , pp. 587-592
    • Wang, W.1    Cheng, X.2    Lu, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.