메뉴 건너뛰기




Volumn 27, Issue 9, 2011, Pages 1269-1276

Mixtures of common t-factor analyzers for clustering high-dimensional microarray data

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; CLUSTER ANALYSIS; COMPUTER PROGRAM; DNA MICROARRAY; FACTORIAL ANALYSIS; GENE EXPRESSION PROFILING; HUMAN; METHODOLOGY; NORMAL DISTRIBUTION; SENSITIVITY AND SPECIFICITY; STATISTICAL MODEL;

EID: 79954535330     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btr112     Document Type: Article
Times cited : (64)

References (34)
  • 2
    • 77952666333 scopus 로고    scopus 로고
    • Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data
    • Baek,J. et al. (2010) Mixtures of factor analyzers with common factor loadings: applications to the clustering and visualisation of high-dimensional data. IEEE Trans. Pattern Anal. Mach. Intel., 32, 1298-1309.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intel. , vol.32 , pp. 1298-1309
    • Baek, J.1
  • 3
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield,J.D. and Raftery,A.E. (1993) Model-based Gaussian and non-Gaussian clustering. Biometrics, 49, 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 4
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacherjee,A. et al. (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl Acad. Sci. USA, 98, 13790-13795.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 13790-13795
    • Bhattacherjee, A.1
  • 5
    • 0000308948 scopus 로고    scopus 로고
    • Using the classification likelihood to choose the number of clusters
    • Biernacki,C. and Govaert,G. (1997) Using the classification likelihood to choose the number of clusters. Comput. Sci. Stat., 29, 451-457.
    • (1997) Comput. Sci. Stat. , vol.29 , pp. 451-457
    • Biernacki, C.1    Govaert, G.2
  • 6
    • 0034228914 scopus 로고    scopus 로고
    • Assessing a mixture model for clustering with the integrated completed likelihood
    • Biernacki,C. et al. (2000) Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intel., 22, 719-725.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intel. , vol.22 , pp. 719-725
    • Biernacki, C.1
  • 7
    • 84879581860 scopus 로고    scopus 로고
    • Mixture models for classification
    • Decker,R. et al. (ed.) Springer, Berlin
    • Celeux,G. (2007) Mixture models for classification. In Decker,R. et al. (ed.) Advances in Data Analysis. Springer, Berlin.
    • (2007) Advances in Data Analysis
    • Celeux, G.1
  • 8
    • 32944471569 scopus 로고    scopus 로고
    • Prognostic gene expression signatures can be measured in tissues collected in RNAlater preservative
    • Chowdary,D. et al. (2006) Prognostic gene expression signatures can be measured in tissues collected in RNAlater preservative. J. Mol. Diagn., 8, 31-39.
    • (2006) J. Mol. Diagn. , vol.8 , pp. 31-39
    • Chowdary, D.1
  • 9
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering methods? Answers via model-based cluster analysis
    • Fraley,C. and Raftery,A.E. (1998) How many clusters? Which clustering methods? Answers via model-based cluster analysis. Comput.J., 41, 578-588.
    • (1998) Comput. J. , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 10
    • 0742306126 scopus 로고    scopus 로고
    • Enhanced model-based clustering, density estimation, and discriminant analysis software: MCLUST
    • Fraley,C. and Raftery,A.E. (2003) Enhanced model-based clustering, density estimation, and discriminant analysis software: MCLUST. J. Classific., 20, 263-286.
    • (2003) J. Classific. , vol.20 , pp. 263-286
    • Fraley, C.1    Raftery, A.E.2
  • 11
    • 77749242735 scopus 로고    scopus 로고
    • Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions
    • Frühwirth-Schnatter,S. and Pyne,S. (2010) Bayesian inference for finite mixtures of univariate and multivariate skew-normal and skew-t distributions. Biostatistics, 11, 317-336.
    • (2010) Biostatistics , vol.11 , pp. 317-336
    • Frühwirth-Schnatter, S.1    Pyne, S.2
  • 12
    • 69449088108 scopus 로고    scopus 로고
    • Penalized factor mixture analysis for variable selection in Clustered Data
    • Galimberti,G. et al. (2009) Penalized factor mixture analysis for variable selection in Clustered Data, Comput. Stat. Data Anal., 53, 4301-4310.
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 4301-4310
    • Galimberti, G.1
  • 13
    • 0344703599 scopus 로고    scopus 로고
    • Normality of oligonucleotide microarray data and implications for parametric statistical analyses
    • Giles,P.J. and Kipling,D. (2003) Normality of oligonucleotide microarray data and implications for parametric statistical analyses. Bioinformatics, 19, 2254-2262.
    • (2003) Bioinformatics , vol.19 , pp. 2254-2262
    • Giles, P.J.1    Kipling, D.2
  • 14
    • 0030737323 scopus 로고    scopus 로고
    • Modeling the manifolds of images of handwritten digits
    • Hinton,G.E. et al. (1997) Modeling the manifolds of images of handwritten digits. IEEE Trans. Neural Netw., 8, 65-73.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , pp. 65-73
    • Hinton, G.E.1
  • 15
    • 0000008146 scopus 로고
    • Comparing partitions
    • Hubert,L. and Arabie,P. (1985) Comparing partitions. J. Classific., 2, 193-218.
    • (1985) J. Classific. , vol.2 , pp. 193-218
    • Hubert, L.1    Arabie, P.2
  • 16
    • 0002954754 scopus 로고    scopus 로고
    • Consistent estimation of the order of mixture models
    • Keribin,C. (2000) Consistent estimation of the order of mixture models. Sankhya Ser. A, 62, 49-66.
    • (2000) Sankhya Ser. A , vol.62 , pp. 49-66
    • Keribin, C.1
  • 17
    • 0037168518 scopus 로고    scopus 로고
    • Genome-wide coexpression dynamics: theory and application
    • Li,K.C. (2002) Genome-wide coexpression dynamics: theory and application. Proc. Natl Acad. Sci. USA, 99, 16875-16880.
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 16875-16880
    • Li, K.C.1
  • 18
    • 0036012343 scopus 로고    scopus 로고
    • Replicated microarray data
    • Lönnstedt,I. and Speed,T. (2002) Replicated microarray data. Stat. Sinica, 12, 31-46.
    • (2002) Stat. Sinica , vol.12 , pp. 31-46
    • Lönnstedt, I.1    Speed, T.2
  • 19
    • 32144450423 scopus 로고    scopus 로고
    • Classification of microarray data with factor mixture models
    • Martella,F. (2006) Classification of microarray data with factor mixture models. Bioinformatics, 22, 202-208.
    • (2006) Bioinformatics , vol.22 , pp. 202-208
    • Martella, F.1
  • 23
    • 0001883037 scopus 로고    scopus 로고
    • The EMMIX software for the fitting of mixtures of normal and t-components
    • Mclachlan,G.J. et al. (1999) The EMMIX software for the fitting of mixtures of normal and t-components. J. Stat. Softw., 4, 2.
    • (1999) J. Stat. Softw. , vol.4 , pp. 2
    • Mclachlan, G.J.1
  • 24
    • 0036203115 scopus 로고    scopus 로고
    • Mixture model-based approach to the clustering of microarray expression data
    • McLachlan,G.J. et al. (2002) Mixture model-based approach to the clustering of microarray expression data. Bioinformatics, 18, 413-422.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1
  • 25
    • 0037469105 scopus 로고    scopus 로고
    • Modelling high-dimensional data by mixtures of factor analyzers
    • McLachlan,G.J. et al. (2003) Modelling high-dimensional data by mixtures of factor analyzers. Comput. Stat. Data Anal., 41, 379-388.
    • (2003) Comput. Stat. Data Anal. , vol.41 , pp. 379-388
    • McLachlan, G.J.1
  • 26
    • 34247855883 scopus 로고    scopus 로고
    • Extension of the mixture of factor analyzers model to incorporate the multivariate t distribution
    • McLachlan,G.J. et al. (2007) Extension of the mixture of factor analyzers model to incorporate the multivariate t distribution. Comput. Stat. Data Anal., 51, 5327-5338.
    • (2007) Comput. Stat. Data Anal. , vol.51 , pp. 5327-5338
    • McLachlan, G.J.1
  • 27
    • 45449088666 scopus 로고    scopus 로고
    • Parsimonious Gaussian mixture models
    • McNicholas,P.D. and Murphy,T.B. (2008) Parsimonious Gaussian mixture models. Stat. Comput., 18, 285-296.
    • (2008) Stat. Comput. , vol.18 , pp. 285-296
    • McNicholas, P.D.1    Murphy, T.B.2
  • 28
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz,G. (1978) Estimating the dimension of a model. Ann. Stat., 6, 461-464.
    • (1978) Ann. Stat. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 29
    • 60849101344 scopus 로고    scopus 로고
    • Clustering cancer gene expression data: a comparative study
    • Souto,M. et al. (2008) Clustering cancer gene expression data: a comparative study. BMC Bioinformatics, 9, 497.
    • (2008) BMC Bioinformatics , vol.9 , pp. 497
    • Souto, M.1
  • 31
    • 33750021210 scopus 로고    scopus 로고
    • Evaluation and comparison of gene clustering methods in microarray analysis
    • Thalamuthu,A. et al. (2006) Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics, 22, 2405-2412.
    • (2006) Bioinformatics , vol.22 , pp. 2405-2412
    • Thalamuthu, A.1
  • 32
    • 77949520571 scopus 로고    scopus 로고
    • Penalized mixtures of factor analyzers with application to clustering high dimensional microarray data
    • Xie,B. et al. (2010) Penalized mixtures of factor analyzers with application to clustering high dimensional microarray data. Bioinformatics, 26, 501-508.
    • (2010) Bioinformatics , vol.26 , pp. 501-508
    • Xie, B.1
  • 33
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung,K.Y. et al. (2001) Model-based clustering and data transformations for gene expression data. Bioinformatics, 17, 977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1
  • 34
    • 77949505112 scopus 로고    scopus 로고
    • Penalized model-based clustering with unconstrained covariance matrices
    • Zhou,H. et al. (2009) Penalized model-based clustering with unconstrained covariance matrices. Electron. J. Stat., 3, 1473-1496.
    • (2009) Electron. J. Stat. , vol.3 , pp. 1473-1496
    • Zhou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.