-
1
-
-
0003120789
-
Why is the Fresnel transform so little known?
-
J. C. Dainty, ed. (Academic, London
-
F. Gori, “Why is the Fresnel transform so little known?” in Current Trends in Optics, J. C. Dainty, ed. (Academic, London, 1994).
-
(1994)
Current Trends in Optics
-
-
Gori, F.1
-
2
-
-
0242518299
-
-
(University Science Books, Mill Valley, Calif., Chap. XX
-
A. E. Siegman, Lasers (University Science Books, Mill Valley, Calif., 1986), Chap. XX, p. 777.
-
(1986)
Lasers
, pp. 777
-
-
Siegman, A.E.1
-
3
-
-
84894388712
-
-
(Saunders College, Fort Worth, Tex., Chap. 2
-
A. Yariv, Optical Electronics (Saunders College, Fort Worth, Tex., 1991), Chap. 2, p. 51.
-
(1991)
Optical Electronics
, pp. 51
-
-
Yariv, A.1
-
4
-
-
0028368314
-
Pulse compression, fiber communication, and diffraction: A unified approach
-
A. Papoulis, “Pulse compression, fiber communication, and diffraction: a unified approach,” J. Opt. Soc. Am. A 11, 3–13 (1994).
-
(1994)
J. Opt. Soc. Am.
, vol.A11
, pp. 3-13
-
-
Papoulis, A.1
-
5
-
-
0001459151
-
Lens-system diffraction integral written in terms of matrix optics
-
S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. 60, 1168–1174 (1970).
-
(1970)
J. Opt. Soc. Am.
, vol.60
, pp. 1168-1174
-
-
Collins, S.A.1
-
6
-
-
84932435168
-
Laser beams and resonators
-
H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
-
(1966)
Appl. Opt.
, vol.5
, pp. 1550-1567
-
-
Kogelnik, H.1
Li, T.2
-
7
-
-
0029229719
-
Reconstruction of the optical correlation function in a quadratic refractive index medium
-
T. Alieva and F. Agulló-López, “Reconstruction of the optical correlation function in a quadratic refractive index medium,” Opt. Commun. 114, 161–169 (1995).
-
(1995)
Opt. Commun.
, vol.114
, pp. 161-169
-
-
Alieva, T.1
Agulló-López, F.2
-
8
-
-
84894402419
-
-
(McGraw-Hill, New York, Chap. 3
-
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965), Chap. 3, p. 49.
-
(1965)
Quantum Mechanics and Path Integrals
, pp. 49
-
-
Feynman, R.P.1
Hibbs, A.R.2
-
9
-
-
0014467447
-
Huygens principle in inhomogeneous, isotropic media and a general integral equation applicable to optical resonators
-
P. Baues, “Huygens’ principle in inhomogeneous, isotropic media and a general integral equation applicable to optical resonators,” Opto-Electron. 1, 37–44 (1969).
-
(1969)
Opto-Electron
, vol.1
, pp. 37-44
-
-
Baues, P.1
-
11
-
-
0020102107
-
First-order optics—a canonical operator representation lossless system
-
M. Nazarathy and J. Shamir, “First-order optics—a canonical operator representation lossless system,” J. Opt. Soc. Am. 72, 356–364 (1982).
-
(1982)
J. Opt. Soc. Am.
, vol.72
, pp. 356-364
-
-
Nazarathy, M.1
Shamir, J.2
-
12
-
-
85010130011
-
Wigner distribution function and its application to first-order optics
-
M. J. Bastiaans, “Wigner distribution function and its application to first-order optics,” J. Opt. Soc. Am. 69, 1710–1716 (1979).
-
(1979)
J. Opt. Soc. Am.
, vol.69
, pp. 1710-1716
-
-
Bastiaans, M.J.1
-
13
-
-
0028546432
-
Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation
-
S. Abe and J. T. Sheridan, “Optical operations on wave functions as the Abelian subgroups of the special affine Fourier transformation,” Opt. Lett. 19, 1801–1803 (1994).
-
(1994)
Opt. Lett.
, vol.19
, pp. 1801-1803
-
-
Abe, S.1
Sheridan, J.T.2
-
14
-
-
0029287912
-
Generalized Radon transform for tomographic measurements of short pulses
-
D. F. V. James and G. S. Agarwal, “Generalized Radon transform for tomographic measurements of short pulses,” J. Opt. Soc. Am. B 12, 704–708 (1995).
-
(1995)
J. Opt. Soc. Am.
, vol.B12
, pp. 704-708
-
-
James, D.F.V.1
Agarwal, G.S.2
-
15
-
-
0030145797
-
The generalized Fresnel transform and its applications to optics
-
D. F. V. James and G. S. Agarwal, “The generalized Fresnel transform and its applications to optics,” Opt. Commun. 126, 207–212 (1996).
-
(1996)
Opt. Commun.
, vol.126
, pp. 207-212
-
-
James, D.F.V.1
Agarwal, G.S.2
-
16
-
-
84894392786
-
-
(Cambridge U. Press, Cambridge, Chap. 12
-
W. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes—The Art of ScientificComputing (Cambridge U. Press, Cambridge, 1986), Chap. 12, p. 390.
-
(1986)
Numerical Recipes—The Art of Scientificcomputing
, pp. 390
-
-
Press, W.1
Flannery, B.P.2
Teukolsky, S.A.3
Vetterling, W.T.4
-
17
-
-
85009414296
-
-
2nd ed. (McGraw-Hill, New York, Chap. 6
-
R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, New York, 1986), Chap. 6, p. 104.
-
(1986)
The Fourier Transform and Its Applications
, pp. 104
-
-
Bracewell, R.N.1
-
18
-
-
0019636663
-
Fresnel transform and sampling theorem
-
F. Gori, “Fresnel transform and sampling theorem,” Opt. Commun. 39, 293–297 (1981).
-
(1981)
Opt. Commun.
, vol.39
, pp. 293-297
-
-
Gori, F.1
-
19
-
-
3843102440
-
Generalization of the principal plane con-cept in matrix optics
-
H. H. Arsenault, “Generalization of the principal plane con-cept in matrix optics,” Am. J. Phys. 48, 397–399 (1980).
-
(1980)
Am. J. Phys.
, vol.48
, pp. 397-399
-
-
Arsenault, H.H.1
-
21
-
-
0028483920
-
A simple realization of fractional Fourier transform and relation to harmonic oscillator Greens function
-
G. S. Agarwal and R. Simon, “A simple realization of fractional Fourier transform and relation to harmonic oscillator Green’s function,” Opt. Commun. 110, 23–26 (1994).
-
(1994)
Opt. Commun.
, vol.110
, pp. 23-26
-
-
Agarwal, G.S.1
Simon, R.2
|