메뉴 건너뛰기




Volumn , Issue , 2013, Pages 154-157

Quantitative Structure-Activity-Relationships for cellular uptake of nanoparticles

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84894211315     PISSN: 19449399     EISSN: 19449380     Source Type: Conference Proceeding    
DOI: 10.1109/NANO.2013.6720861     Document Type: Conference Paper
Times cited : (4)

References (29)
  • 1
    • 80455149950 scopus 로고    scopus 로고
    • Environmental, health and safety issues: Nanoparticles in the real world
    • M. J. McCall, "Environmental, health and safety issues: Nanoparticles in the real world," Nature Nanotechnology, vol. 6, pp. 613-614, 2011.
    • (2011) Nature Nanotechnology , vol.6 , pp. 613-614
    • McCall, M.J.1
  • 2
    • 84875346892 scopus 로고    scopus 로고
    • In silico analysis of nanomaterials hazard and risk
    • Y. Cohen, et al., "In Silico Analysis of Nanomaterials Hazard and Risk," Accounts of Chemical Research, vol. 46, pp. 802-812, 2013.
    • (2013) Accounts of Chemical Research , vol.46 , pp. 802-812
    • Cohen, Y.1
  • 4
    • 73349083717 scopus 로고    scopus 로고
    • Toward the development of "nano-QSARs": Advances and challenges
    • T. Puzyn, et al., "Toward the development of "nano-QSARs": advances and challenges," Small, vol. 5, pp. 2494-2509, 2009.
    • (2009) Small , vol.5 , pp. 2494-2509
    • Puzyn, T.1
  • 5
    • 79952697349 scopus 로고    scopus 로고
    • Predictive models for nanotoxicology: Current challenges and future opportunities
    • K. A. Clark, et al., "Predictive models for nanotoxicology: Current challenges and future opportunities," Regulatory Toxicology and Pharmacology, vol. 59, pp. 361-363, 2011.
    • (2011) Regulatory Toxicology and Pharmacology , vol.59 , pp. 361-363
    • Clark, K.A.1
  • 6
    • 79952485164 scopus 로고    scopus 로고
    • Data flow modeling, data mining and QSAR in high-throughput discovery of functional nanomaterials
    • X. Z. Wang, et al., "Data flow modeling, data mining and QSAR in high-throughput discovery of functional nanomaterials," Computers & Chemical Engineering, vol. 35, pp. 671-678, 2011.
    • (2011) Computers & Chemical Engineering , vol.35 , pp. 671-678
    • Wang, X.Z.1
  • 7
    • 84855763277 scopus 로고    scopus 로고
    • Construction of coherent nano quantitative structure-properties relationships (nano-QSPR) models and catastrophe theory
    • R. Carbo-Dorca and E. Besalu, "Construction of coherent nano quantitative structure-properties relationships (nano-QSPR) models and catastrophe theory," SAR and QSAR in Environmental Research, vol. 22, pp. 661-665, 2011.
    • (2011) SAR and QSAR in Environmental Research , vol.22 , pp. 661-665
    • Carbo-Dorca, R.1    Besalu, E.2
  • 8
    • 84873718392 scopus 로고    scopus 로고
    • Physicochemical properties determine nanomaterial cellular uptake, transport, and fate
    • M. Zhu, et al., "Physicochemical Properties Determine Nanomaterial Cellular Uptake, Transport, and Fate," Accounts of Chemical Research, vol. 46, pp. 622-631, 2013.
    • (2013) Accounts of Chemical Research , vol.46 , pp. 622-631
    • Zhu, M.1
  • 9
    • 84869164498 scopus 로고    scopus 로고
    • Modeling biological activities of nanoparticles
    • V. C. Epa, et al., "Modeling biological activities of nanoparticles," Nano Letters, vol. 12, pp. 5808-5812, 2012.
    • (2012) Nano Letters , vol.12 , pp. 5808-5812
    • Epa, V.C.1
  • 10
    • 78349253077 scopus 로고    scopus 로고
    • Comparative study of predictive computational models for nanoparticle-induced cytotoxicity
    • C. Sayes and I. Ivanov, "Comparative Study of Predictive Computational Models for Nanoparticle-Induced Cytotoxicity," Risk Analysis, vol. 30, pp. 1723-1734, 2010.
    • (2010) Risk Analysis , vol.30 , pp. 1723-1734
    • Sayes, C.1    Ivanov, I.2
  • 11
    • 78049334073 scopus 로고    scopus 로고
    • Quantitative nanostructure-activity relationship modeling
    • Oct 26
    • D. Fourches, et al., "Quantitative nanostructure-activity relationship modeling," Acs Nano, vol. 4, pp. 5703-5712, Oct 26 2010.
    • (2010) Acs Nano , vol.4 , pp. 5703-5712
    • Fourches, D.1
  • 12
    • 79952372146 scopus 로고    scopus 로고
    • Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles
    • T. Puzyn, et al., "Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles," Nature Nanotechnology, vol. 6, pp. 175-178, 2011.
    • (2011) Nature Nanotechnology , vol.6 , pp. 175-178
    • Puzyn, T.1
  • 13
    • 79954561104 scopus 로고    scopus 로고
    • Classification nano SAR development for cytotoxicity of metal oxide nanoparticles
    • R. Liu, et al., "Classification Nano SAR Development for Cytotoxicity of Metal Oxide Nanoparticles," Small, vol. 7, pp. 1118-1126, 2011.
    • (2011) Small , vol.7 , pp. 1118-1126
    • Liu, R.1
  • 14
    • 84878041827 scopus 로고    scopus 로고
    • Nano-SAR development for bioactivity of nanoparticles with considerations of decision boundaries
    • R. Liu, et al., "Nano-SAR Development for Bioactivity of Nanoparticles with Considerations of Decision Boundaries," Small, vol. 9, pp. 1842-1852, 2013.
    • (2013) Small , vol.9 , pp. 1842-1852
    • Liu, R.1
  • 15
    • 84878702885 scopus 로고    scopus 로고
    • Development of structure-activity relationship for metal oxide nanoparticles
    • doi: 10.1039/c3nr01533e
    • R. Liu, et al., "Development of Structure-Activity Relationship for Metal Oxide Nanoparticles," Nanoscale, doi: 10.1039/c3nr01533e, 2013.
    • (2013) Nanoscale
    • Liu, R.1
  • 16
    • 27944496941 scopus 로고    scopus 로고
    • Cell-specific targeting of nanoparticles by multivalent attachment of small molecules
    • R. Weissleder, et al., "Cell-specific targeting of nanoparticles by multivalent attachment of small molecules," Nature Biotechnology, vol. 23, pp. 1418-1423, 2005.
    • (2005) Nature Biotechnology , vol.23 , pp. 1418-1423
    • Weissleder, R.1
  • 17
    • 84859595367 scopus 로고    scopus 로고
    • Automated phenotype recognition for zebrafish embryo based in-vivo high throughput toxicity screening of engineered nano-materials
    • R. Liu, et al., "Automated Phenotype Recognition for Zebrafish Embryo Based In-Vivo High Throughput Toxicity Screening of Engineered Nano-Materials," Plos One, vol. 7, p. e35014, 2012.
    • (2012) Plos One , vol.7
    • Liu, R.1
  • 18
    • 84855757480 scopus 로고    scopus 로고
    • MOE, "" 2008 ed. Montreal: Chemical Computing Group Inc
    • MOE, "Molecular Operating Environment (MOE)," 2008 ed. Montreal: Chemical Computing Group Inc., 2012.
    • (2012) Molecular Operating Environment (MOE)
  • 21
    • 84873646501 scopus 로고    scopus 로고
    • New empirical nonparametric kernels for support vector machine classification
    • E. A. Daoud and H. Turabieh, "New empirical nonparametric kernels for support vector machine classification," Applied Soft Computing, vol. 13, pp. 1759-1765, 2013.
    • (2013) Applied Soft Computing , vol.13 , pp. 1759-1765
    • Daoud, E.A.1    Turabieh, H.2
  • 24
    • 37349097759 scopus 로고    scopus 로고
    • Y-randomization and its variants in QSPR/QSAR
    • C. Rucker, et al., "y-Randomization and its variants in QSPR/QSAR," Journal of Chemical Information and Modeling, vol. 47, pp. 2345-2357, 2007.
    • (2007) Journal of Chemical Information and Modeling , vol.47 , pp. 2345-2357
    • Rucker, C.1
  • 27
    • 84894197067 scopus 로고    scopus 로고
    • MOE. (, February)
    • MOE. (2013, February). QuaSAR-Descriptor. Available: http://www.chemcomp. com/journal/descr.htm
    • (2013) QuaSAR-Descriptor
  • 29
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V. N. Vapnik, "An overview of statistical learning theory," IEEE Transactions on Neural Networks, vol. 10, pp. 988-999, 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 988-999
    • Vapnik, V.N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.