-
1
-
-
0028110878
-
The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer
-
Kraemer K.H., et al. The role of sunlight and DNA repair in melanoma and nonmelanoma skin cancer. Arch. Dermatol. 1994, 130:1018-1021.
-
(1994)
Arch. Dermatol.
, vol.130
, pp. 1018-1021
-
-
Kraemer, K.H.1
-
4
-
-
0035902108
-
Genome maintenance mechanisms for preventing cancer
-
Hoeijmakers J.H.J. Genome maintenance mechanisms for preventing cancer. Nature 2001, 411:366-374.
-
(2001)
Nature
, vol.411
, pp. 366-374
-
-
Hoeijmakers, J.H.J.1
-
5
-
-
79960377780
-
A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor
-
Egly J.M., Coin F. A history of TFIIH: two decades of molecular biology on a pivotal transcription/repair factor. DNA Repair 2011, 10:714-721.
-
(2011)
DNA Repair
, vol.10
, pp. 714-721
-
-
Egly, J.M.1
Coin, F.2
-
6
-
-
62349131315
-
Nucleotide excision repair: variations on versatility
-
Nouspikel T. Nucleotide excision repair: variations on versatility. Cell. Mol. Life Sci. 2009, 66:994-1009.
-
(2009)
Cell. Mol. Life Sci.
, vol.66
, pp. 994-1009
-
-
Nouspikel, T.1
-
7
-
-
0028085556
-
XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair
-
O'Donovan A., et al. XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair. Nature 1994, 371:432-435.
-
(1994)
Nature
, vol.371
, pp. 432-435
-
-
O'Donovan, A.1
-
8
-
-
0034733496
-
Nucleotide excision repair in yeast
-
Prakash S., Prakash L. Nucleotide excision repair in yeast. Mut. Res. 2000, 451:13-24.
-
(2000)
Mut. Res.
, vol.451
, pp. 13-24
-
-
Prakash, S.1
Prakash, L.2
-
9
-
-
0027521336
-
Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease
-
Habraken Y., et al. Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease. Nature 1993, 366:365-368.
-
(1993)
Nature
, vol.366
, pp. 365-368
-
-
Habraken, Y.1
-
10
-
-
0033605159
-
Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair
-
Constantinou A., et al. Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J. Biol. Chem. 1999, 274:5637-5648.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 5637-5648
-
-
Constantinou, A.1
-
11
-
-
60549092333
-
XPG: its products and biological roles
-
Schärer O.D. XPG: its products and biological roles. Adv. Exp. Med. Biol. 2008, 637:83-92.
-
(2008)
Adv. Exp. Med. Biol.
, vol.637
, pp. 83-92
-
-
Schärer, O.D.1
-
12
-
-
0037188888
-
Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription: Implications for Cockayne syndrome
-
Lee S.-K., et al. Requirement of yeast RAD2, a homolog of human XPG gene, for efficient RNA polymerase II transcription: Implications for Cockayne syndrome. Cell 2002, 109:823-834.
-
(2002)
Cell
, vol.109
, pp. 823-834
-
-
Lee, S.-K.1
-
13
-
-
34247256517
-
XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: Implications for Cockayne syndrome in XP-G/CS patients
-
Ito S., et al. XPG stabilizes TFIIH, allowing transactivation of nuclear receptors: Implications for Cockayne syndrome in XP-G/CS patients. Mol. Cell 2007, 26:231-243.
-
(2007)
Mol. Cell
, vol.26
, pp. 231-243
-
-
Ito, S.1
-
14
-
-
26944448202
-
Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne syndrome
-
Sarker A.H., et al. Recognition of RNA polymerase II and transcription bubbles by XPG, CSB, and TFIIH: insights for transcription-coupled repair and Cockayne syndrome. Mol. Cell 2005, 20:187-198.
-
(2005)
Mol. Cell
, vol.20
, pp. 187-198
-
-
Sarker, A.H.1
-
15
-
-
0030767281
-
The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21
-
Gary R., et al. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21. J. Biol. Chem. 1997, 272:24522-24529.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 24522-24529
-
-
Gary, R.1
-
16
-
-
63049096813
-
Ubiquitin-binding domains and their role in the DNA damage response
-
Hofmann K. Ubiquitin-binding domains and their role in the DNA damage response. DNA Repair 2009, 8:544-556.
-
(2009)
DNA Repair
, vol.8
, pp. 544-556
-
-
Hofmann, K.1
-
17
-
-
0041885325
-
Proliferating cell nuclear antigen (PCNA): a dancer with many partners
-
Maga G., Hübscher U. Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J. Cell Sci. 2003, 116:3051-3060.
-
(2003)
J. Cell Sci.
, vol.116
, pp. 3051-3060
-
-
Maga, G.1
Hübscher, U.2
-
18
-
-
34249066085
-
PCNA, the maestro of the replication fork
-
Moldovan G.L., Pfander B., Jentsch S. PCNA, the maestro of the replication fork. Cell 2007, 129:665-679.
-
(2007)
Cell
, vol.129
, pp. 665-679
-
-
Moldovan, G.L.1
Pfander, B.2
Jentsch, S.3
-
19
-
-
0141831006
-
Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation
-
Stelter P., Ulrich H.D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 2003, 425:188-191.
-
(2003)
Nature
, vol.425
, pp. 188-191
-
-
Stelter, P.1
Ulrich, H.D.2
-
20
-
-
0032031972
-
PCNA binding through a conserved motif
-
Warbrick E. PCNA binding through a conserved motif. BioEssays 1998, 20:195-199.
-
(1998)
BioEssays
, vol.20
, pp. 195-199
-
-
Warbrick, E.1
-
21
-
-
38049123477
-
Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA
-
Andersen P.L., Xu F., Xiao W. Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res. 2008, 18:162-173.
-
(2008)
Cell Res.
, vol.18
, pp. 162-173
-
-
Andersen, P.L.1
Xu, F.2
Xiao, W.3
-
22
-
-
2942529467
-
Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae
-
Haracska L., et al. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell. Biol. 2004, 24:4267-4274.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 4267-4274
-
-
Haracska, L.1
-
23
-
-
33646254420
-
Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis
-
Haracska L., et al. Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proc. Natl. Acad. Sci. USA 2006, 103:6477-6482.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 6477-6482
-
-
Haracska, L.1
-
24
-
-
0037068455
-
RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
-
Hoege C., et al. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 2002, 419:135-141.
-
(2002)
Nature
, vol.419
, pp. 135-141
-
-
Hoege, C.1
-
25
-
-
21244449061
-
Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p
-
Papouli E., et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 2005, 19:123-133.
-
(2005)
Mol. Cell
, vol.19
, pp. 123-133
-
-
Papouli, E.1
-
26
-
-
22944474665
-
SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase
-
Pfander B., et al. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 2005, 436:428-433.
-
(2005)
Nature
, vol.436
, pp. 428-433
-
-
Pfander, B.1
-
27
-
-
0035162698
-
Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p
-
Gasch A.P., et al. Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Mol. Biol. Cell 2001, 12:2987-3003.
-
(2001)
Mol. Biol. Cell
, vol.12
, pp. 2987-3003
-
-
Gasch, A.P.1
-
28
-
-
57049097607
-
Cdt2-mediated destruction of E2f1 during S phase
-
Cdt2-mediated destruction of E2f1 during S phase. Dev. Cell 2008, 15:890-900.
-
(2008)
Dev. Cell
, vol.15
, pp. 890-900
-
-
Shibutani, S.T.1
-
29
-
-
0022635503
-
Nucleotide sequence, transcript mapping, and regulation of the RAD2 gene of Saccharomyces cerevisiae
-
Madura K., Prakash S. Nucleotide sequence, transcript mapping, and regulation of the RAD2 gene of Saccharomyces cerevisiae. J. Bacteriol. 1986, 166:914-923.
-
(1986)
J. Bacteriol.
, vol.166
, pp. 914-923
-
-
Madura, K.1
Prakash, S.2
-
30
-
-
0022458328
-
A yeast excision-repair gene is inducible by DNA damaging agents
-
Robinson G.W., et al. A yeast excision-repair gene is inducible by DNA damaging agents. Proc. Natl. Acad. Sci. U.S.A. 1986, 83:1842-1846.
-
(1986)
Proc. Natl. Acad. Sci. U.S.A.
, vol.83
, pp. 1842-1846
-
-
Robinson, G.W.1
-
31
-
-
0023415509
-
Overexpression of the RAD2 gene of S. cerevisiae: identification and preliminary characterization of Rad2 protein
-
Nicolet C.M., Friedberg E.C. Overexpression of the RAD2 gene of S. cerevisiae: identification and preliminary characterization of Rad2 protein. Yeast 1987, 3:149-160.
-
(1987)
Yeast
, vol.3
, pp. 149-160
-
-
Nicolet, C.M.1
Friedberg, E.C.2
-
32
-
-
33845888229
-
C-Fos is required for excision repair of UV-light induced DNA lesions by triggering the re-synthesis of XPF
-
Christmann M., et al. c-Fos is required for excision repair of UV-light induced DNA lesions by triggering the re-synthesis of XPF. Nucleic Acids Res. 2006, 34:6530-6539.
-
(2006)
Nucleic Acids Res.
, vol.34
, pp. 6530-6539
-
-
Christmann, M.1
-
33
-
-
77954627139
-
Mitotic catastrophe induced by overexpression of budding yeast Rad2p
-
Kang M.S., et al. Mitotic catastrophe induced by overexpression of budding yeast Rad2p. Yeast 2010, 27:399-411.
-
(2010)
Yeast
, vol.27
, pp. 399-411
-
-
Kang, M.S.1
-
34
-
-
84875857592
-
SPT4 increases UV-induced mutagenesis in yeast through impaired nucleotide excision repair
-
Kang M.S., et al. SPT4 increases UV-induced mutagenesis in yeast through impaired nucleotide excision repair. Mol. Cell. Tox. 2013, 9:37-43.
-
(2013)
Mol. Cell. Tox.
, vol.9
, pp. 37-43
-
-
Kang, M.S.1
-
35
-
-
29244488205
-
Extremely rapid extraction of DNA from bacteria and yeast
-
Cheng H.R., Jiang N. Extremely rapid extraction of DNA from bacteria and yeast. Biotech. Lett. 2006, 28:55-59.
-
(2006)
Biotech. Lett.
, vol.28
, pp. 55-59
-
-
Cheng, H.R.1
Jiang, N.2
-
36
-
-
77951590753
-
Contributions of nucleotide excision repair, DNA polymerase eta, and homologous recombination to replication of UV-irradiated herpes simplex virus type 1
-
Muylaertm I., Elias P. Contributions of nucleotide excision repair, DNA polymerase eta, and homologous recombination to replication of UV-irradiated herpes simplex virus type 1. J. Biol. Chem. 2010, 285:13761-13768.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 13761-13768
-
-
Muylaertm, I.1
Elias, P.2
-
37
-
-
84863079212
-
Restoration of proliferation ability with increased genomic instability from Rad2p-induced mitotic catastrophe in Saccharomyces cerevisiae
-
Yu S.L., et al. Restoration of proliferation ability with increased genomic instability from Rad2p-induced mitotic catastrophe in Saccharomyces cerevisiae. Mol. Cell. Tox. 2011, 7:195-206.
-
(2011)
Mol. Cell. Tox.
, vol.7
, pp. 195-206
-
-
Yu, S.L.1
-
38
-
-
0015847513
-
Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants
-
Hartwell L.H., et al. Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genetics 1973, 74:267-286.
-
(1973)
Genetics
, vol.74
, pp. 267-286
-
-
Hartwell, L.H.1
-
39
-
-
33845337082
-
Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae
-
Enserink J.M., et al. Checkpoint proteins control morphogenetic events during DNA replication stress in Saccharomyces cerevisiae. J. Cell Biol. 2006, 175:729-741.
-
(2006)
J. Cell Biol.
, vol.175
, pp. 729-741
-
-
Enserink, J.M.1
-
40
-
-
0030667206
-
A yeast mutant showing diagnostic markers of early and late apoptosis
-
Madeo F., Fröhlich E., Fröhlich K.U. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 1997, 139:729-734.
-
(1997)
J. Cell Biol.
, vol.139
, pp. 729-734
-
-
Madeo, F.1
Fröhlich, E.2
Fröhlich, K.U.3
-
41
-
-
0034757063
-
UV-induced binding of ING1 to PCNA regulates the induction of apoptosis
-
Scott M., et al. UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. J. Cell Sci. 2001, 114:3455-3462.
-
(2001)
J. Cell Sci.
, vol.114
, pp. 3455-3462
-
-
Scott, M.1
-
42
-
-
0026006294
-
Senescence as a model of tumor suppression
-
Sager R. Senescence as a model of tumor suppression. Environ. Health Persp. 1991, 93:59-62.
-
(1991)
Environ. Health Persp.
, vol.93
, pp. 59-62
-
-
Sager, R.1
-
43
-
-
84861469589
-
Cellular senescence: a double-edged sword in the fight against cancer
-
Ohtani N., et al. Cellular senescence: a double-edged sword in the fight against cancer. Exp. Dermatol. 2012, 21(Suppl. 1):1-4.
-
(2012)
Exp. Dermatol.
, vol.21
, Issue.SUPPL. 1
, pp. 1-4
-
-
Ohtani, N.1
-
44
-
-
77954563804
-
Senescent cells as a source of inflammatory factors for tumor progression
-
Davalos A.R., et al. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 2010, 29:273-283.
-
(2010)
Cancer Metastasis Rev.
, vol.29
, pp. 273-283
-
-
Davalos, A.R.1
-
45
-
-
79951912532
-
Four faces of cellular senescence
-
Rodier F., Campisi J. Four faces of cellular senescence. J. Cell Biol. 2011, 4:547-556.
-
(2011)
J. Cell Biol.
, vol.4
, pp. 547-556
-
-
Rodier, F.1
Campisi, J.2
-
46
-
-
84873638532
-
Aging, cellular senescence, and cancer
-
Campisi J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 2013, 75:685-705.
-
(2013)
Annu. Rev. Physiol.
, vol.75
, pp. 685-705
-
-
Campisi, J.1
-
47
-
-
0029837030
-
In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair
-
Amin N.S., Holm C. In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair. Genetics 1996, 144:479-493.
-
(1996)
Genetics
, vol.144
, pp. 479-493
-
-
Amin, N.S.1
Holm, C.2
-
48
-
-
80051961183
-
Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation
-
Sertic S., et al. Human exonuclease 1 connects nucleotide excision repair (NER) processing with checkpoint activation in response to UV irradiation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:13647-13652.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 13647-13652
-
-
Sertic, S.1
-
49
-
-
77957375149
-
Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation
-
Giannattasio M., et al. Exo1 competes with repair synthesis, converts NER intermediates to long ssDNA gaps, and promotes checkpoint activation. Mol. Cell 2010, 40:50-62.
-
(2010)
Mol. Cell
, vol.40
, pp. 50-62
-
-
Giannattasio, M.1
|