-
2
-
-
0742288008
-
The enzymes and control of eukaryotic mRNA turnover
-
Parker R, Song H. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 2004; 11:121-127.
-
(2004)
Nat Struct Mol Biol
, vol.11
, pp. 121-127
-
-
Parker, R.1
Song, H.2
-
3
-
-
0024296025
-
Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3 AU-rich sequences
-
Wilson T, Treisman R. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3 AU-rich sequences. Nature 1988; 336:396-399.
-
(1988)
Nature
, vol.336
, pp. 396-399
-
-
Wilson, T.1
Treisman, R.2
-
4
-
-
0026027749
-
Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay
-
Shyu AB, Belasco JG, Greenberg ME. Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev 1991; 5:221-231.
-
(1991)
Genes Dev
, vol.5
, pp. 221-231
-
-
Shyu, A.B.1
Belasco, J.G.2
Greenberg, M.E.3
-
5
-
-
0027320701
-
A turnover pathway for both stable and unstable mRNAs in yeast: Evidence for a requirement for deadenylation
-
Decker CJ, Parker R. A turnover pathway for both stable and unstable mRNAs in yeast: Evidence for a requirement for deadenylation. Genes Dev 1993; 7:1632-1643.
-
(1993)
Genes Dev
, vol.7
, pp. 1632-1643
-
-
Decker, C.J.1
Parker, R.2
-
7
-
-
0027214097
-
Yeast cells lacking 53 exoribonuclease contain mRNA species that are poly(A) deficient and partially lack the 5 cap structure
-
Hsu CL, Stevens A. Yeast cells lacking 53 exoribonuclease contain mRNA species that are poly(A) deficient and partially lack the 5 cap structure. Mol Cell Biol 1993; 13:4826-4835.
-
(1993)
Mol Cell Biol
, vol.13
, pp. 4826-4835
-
-
Hsu, C.L.1
Stevens, A.2
-
8
-
-
0029758321
-
An essential component of the decapping enzyme required for normal rates of mRNA turnover
-
Beelman CA, Stevens A, Caponigro G, et al. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 1996; 382:642-646.
-
(1996)
Nature
, vol.382
, pp. 642-646
-
-
Beelman, C.A.1
Stevens, A.2
Caponigro, G.3
-
9
-
-
0033214061
-
The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif
-
Dunckley T, Parker R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J 1999; 18:5411-5422.
-
(1999)
EMBO J
, vol.18
, pp. 5411-5422
-
-
Dunckley, T.1
Parker, R.2
-
10
-
-
36248947229
-
3 Terminal oligo U-tract-mediated stimulation of decapping
-
Song MG, Kiledjian M. 3 Terminal oligo U-tract-mediated stimulation of decapping. Rna 2007; 13:2356-2365.
-
(2007)
Rna
, vol.13
, pp. 2356-2365
-
-
Song, M.G.1
Kiledjian, M.2
-
11
-
-
66849122924
-
Decapping is preceded by 3 uridylation in a novel pathway of bulk mRNA turnover
-
Rissland OS, Norbury CJ. Decapping is preceded by 3 uridylation in a novel pathway of bulk mRNA turnover. Nat Struct Mol Biol 2009; 16:616-623.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 616-623
-
-
Rissland, O.S.1
Norbury, C.J.2
-
12
-
-
29144481702
-
Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping
-
Fenger-Gron M, Fillman C, Norrild B, Lykke-Andersen J. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 2005; 20:905-915.
-
(2005)
Mol Cell
, vol.20
, pp. 905-915
-
-
Fenger-Gron, M.1
Fillman, C.2
Norrild, B.3
Lykke-Andersen, J.4
-
13
-
-
25844442472
-
A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing
-
Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 2005; 11:1640-1647.
-
(2005)
RNA
, vol.11
, pp. 1640-1647
-
-
Rehwinkel, J.1
Behm-Ansmant, I.2
Gatfield, D.3
Izaurralde, E.4
-
14
-
-
33746055678
-
MRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes
-
Behm-Ansmant I, Rehwinkel J, Doerks T, et al. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 2006; 20:1885-1898.
-
(2006)
Genes Dev
, vol.20
, pp. 1885-1898
-
-
Behm-Ansmant, I.1
Rehwinkel, J.2
Et Al., D.T.3
-
15
-
-
38149023239
-
Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5 to 3 and 3 to 5
-
Mullen TE, Marzluff WF. Degradation of histone mRNA requires oligouridylation followed by decapping and simultaneous degradation of the mRNA both 5 to 3 and 3 to 5. Genes Dev 2008; 22:50-65.
-
(2008)
Genes Dev
, vol.22
, pp. 50-65
-
-
Mullen, T.E.1
Marzluff, W.F.2
-
16
-
-
84856782922
-
Decapping of long noncoding RNAs regulates inducible genes
-
Geisler S, Lojek L, Khalil AM, Baker KE, Coller J. Decapping of long noncoding RNAs regulates inducible genes. Mol Cell 2012; 45:279-291.
-
(2012)
Mol Cell
, vol.45
, pp. 279-291
-
-
Geisler, S.1
Lojek, L.2
Khalil, A.M.3
Baker, K.E.4
Coller, J.5
-
17
-
-
84870553285
-
Structural basis of the PNRC2- mediated link between mRNA surveillance and decapping
-
Lai T, Cho H, Liu Z, et al. Structural basis of the PNRC2- mediated link between mRNA surveillance and decapping. Structure 2012; 20:2025-2037.
-
(2012)
Structure
, vol.20
, pp. 2025-2037
-
-
Lai, T.1
Cho, H.2
Liu, Z.3
-
18
-
-
66049158810
-
Polysomes,P bodies and stress granules: States and fates of eukaryotic mRNAs
-
Balagopal V, Parker R. Polysomes, P bodies and stress granules: States and fates of eukaryotic mRNAs. Curr Opin Cell Biol 2009; 21:403-408.
-
(2009)
Curr Opin Cell Biol
, vol.21
, pp. 403-408
-
-
Balagopal, V.1
Parker, R.2
-
20
-
-
33847417585
-
P bodies and the control of mRNA translation and degradation
-
Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell 2007; 25:635-646.
-
(2007)
Mol Cell
, vol.25
, pp. 635-646
-
-
Parker, R.1
Sheth, U.2
-
21
-
-
38949151861
-
Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping
-
Pilkington GR, Parker R. Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping. Mol Cell Biol 2008; 28:1298-1312.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 1298-1312
-
-
Pilkington, G.R.1
Parker, R.2
-
22
-
-
77956540817
-
Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms
-
Nissan T, Rajyaguru P, She M, Song H, Parker R. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Molecular cell 2010; 39:773-783.
-
(2010)
Molecular Cell
, vol.39
, pp. 773-783
-
-
Nissan, T.1
Rajyaguru, P.2
She, M.3
Song, H.4
Parker, R.5
-
23
-
-
77954886594
-
The C-terminal alphaalpha superhelix of Pat is required for mRNA decapping in metazoa
-
Braun JE, Tritschler F, Haas G, et al. The C-terminal alphaalpha superhelix of Pat is required for mRNA decapping in metazoa. EMBO J 2010; 29:2368-2380.
-
(2010)
EMBO J
, vol.29
, pp. 2368-2380
-
-
Braun, J.E.1
Tritschler, F.2
Haas, G.3
-
24
-
-
0037013898
-
DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1
-
Fischer N, Weis K. The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J 2002; 21:2788-2797.
-
(2002)
EMBO J
, vol.21
, pp. 2788-2797
-
-
Fischer, N.1
Weis, K.2
-
25
-
-
77956642517
-
Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies
-
Ozgur S, Chekulaeva M, Stoecklin G. Human Pat1b connects deadenylation with mRNA decapping and controls the assembly of processing bodies. Mol Cell Biol 2010; 30:4308-4323.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 4308-4323
-
-
Ozgur, S.1
Chekulaeva, M.2
Stoecklin, G.3
-
26
-
-
78649722117
-
The human Pat1b protein: A novel mRNA deadenylation factor identified by a new immunoprecipitation technique
-
Totaro A, Renzi F, La Fata G, et al. The human Pat1b protein: A novel mRNA deadenylation factor identified by a new immunoprecipitation technique. Nucleic Acids Res 2011; 39:635-647.
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 635-647
-
-
Totaro, A.1
Renzi, F.2
La Fata, G.3
-
27
-
-
34250804009
-
The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs
-
Chowdhury A, Mukhopadhyay J, Tharun S. The decapping activator Lsm1p-7p-Pat1p complex has the intrinsic ability to distinguish between oligoadenylated and polyadenylated RNAs. RNA 2007; 13:998-1016.
-
(2007)
RNA
, vol.13
, pp. 998-1016
-
-
Chowdhury, A.1
Mukhopadhyay, J.2
Tharun, S.3
-
28
-
-
34548472407
-
Lsm proteins bind and stabilize RNAs containing 5 poly(A) tracts
-
Bergman N, Moraes KC, Anderson JR, et al. Lsm proteins bind and stabilize RNAs containing 5 poly(A) tracts. Nat Struct Mol Biol 2007; 14:824-831.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 824-831
-
-
Bergman, N.1
Moraes, K.C.2
Anderson, J.R.3
-
29
-
-
79956061166
-
Lsm1 promotes genomic stability by controlling histone mRNA decay
-
Herrero AB, Moreno S. Lsm1 promotes genomic stability by controlling histone mRNA decay. EMBO J 2011; 30:2008- 2018.
-
(2011)
EMBO J
, vol.30
, pp. 2008-2018
-
-
Herrero, A.B.1
Moreno, S.2
-
30
-
-
77955947192
-
3 Uridylation and the regulation of RNA function in the cytoplasm
-
Norbury CJ. 3 Uridylation and the regulation of RNA function in the cytoplasm. Biochem Soc Trans 2010; 38:1150-1153.
-
(2010)
Biochem Soc Trans
, vol.38
, pp. 1150-1153
-
-
Norbury, C.J.1
-
31
-
-
53949088050
-
Lin28 mediates the terminal uridylation of let-7 precursor microRNA
-
Heo I, Joo C, Cho J, et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol Cell 2008; 32:276-284.
-
(2008)
Mol Cell
, vol.32
, pp. 276-284
-
-
Heo, I.1
Joo, C.2
Cho, J.3
-
32
-
-
70349820140
-
Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells
-
Hagan JP, Piskounova E, Gregory RI. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in mouse embryonic stem cells. Nat Struct Mol Biol 2009; 16:1021-1025.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 1021-1025
-
-
Hagan, J.P.1
Piskounova, E.2
Gregory, R.I.3
-
33
-
-
68749102148
-
TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation
-
Heo I, Joo C, Kim YK, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 2009; 138:696-708.
-
(2009)
Cell
, vol.138
, pp. 696-708
-
-
Heo, I.1
Joo, C.2
Kim, Y.K.3
-
34
-
-
70349810911
-
LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans
-
Lehrbach NJ, Armisen J, Lightfoot HL, et al. LIN-28 and the poly(U) polymerase PUP-2 regulate let-7 microRNA processing in Caenorhabditis elegans. Nat Struct Mol Biol 2009; 16:1016-1020.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 1016-1020
-
-
Lehrbach, N.J.1
Armisen, J.2
Lightfoot, H.L.3
-
35
-
-
70349442298
-
CDE-1 affects chromosome segregation through uridylation of CSR- 1-bound siRNAs
-
van Wolfswinkel JC, Claycomb JM, Batista PJ, et al. CDE-1 affects chromosome segregation through uridylation of CSR- 1-bound siRNAs. Cell 2009; 139:135-148.
-
(2009)
Cell
, vol.139
, pp. 135-148
-
-
Van Wolfswinkel, J.C.1
Claycomb, J.M.2
Batista, P.J.3
-
36
-
-
18144402771
-
Reconstitution of two recombinant LSm protein complexes reveals aspects of their architecture, assembly, and function
-
Zaric B, Chami M, Remigy H, et al. Reconstitution of two recombinant LSm protein complexes reveals aspects of their architecture, assembly, and function. J Biol Chem 2005; 280:16066-16075.
-
(2005)
J Biol Chem
, vol.280
, pp. 16066-16075
-
-
Zaric, B.1
Chami, M.2
Remigy, H.3
-
37
-
-
38949215732
-
MRNA decapping is promoted by an RNA-binding channel in Dcp2
-
Deshmukh MV, Jones BN, Quang-Dang DU, et al. mRNA decapping is promoted by an RNA-binding channel in Dcp2. Mol Cell 2008; 29:324-336.
-
(2008)
Mol Cell
, vol.29
, pp. 324-336
-
-
Deshmukh, M.V.1
Jones, B.N.2
Quang-Dang, D.U.3
-
38
-
-
0035861864
-
Functional link between the mammalian exosome and mRNA decapping
-
Wang Z, Kiledjian M. Functional link between the mammalian exosome and mRNA decapping. Cell 2001; 107:751-762.
-
(2001)
Cell
, vol.107
, pp. 751-762
-
-
Wang, Z.1
Kiledjian, M.2
-
39
-
-
0034599976
-
A Sm-like protein complex that participates in mRNA degradation
-
Bouveret E, Rigaut G, Shevchenko A, Wilm M, Seraphin B. A Sm-like protein complex that participates in mRNA degradation. EMBO J 2000; 19:1661-1671.
-
(2000)
EMBO J
, vol.19
, pp. 1661-1671
-
-
Bouveret, E.1
Rigaut, G.2
Shevchenko, A.3
Wilm, M.4
Seraphin, B.5
-
40
-
-
0034732089
-
Yeast Sm-like proteins function in mRNA decapping and decay
-
Tharun S, He W, Mayes AE, et al. Yeast Sm-like proteins function in mRNA decapping and decay. Nature 2000; 404:515-518.
-
(2000)
Nature
, vol.404
, pp. 515-518
-
-
Tharun, S.1
He, W.2
Mayes, A.E.3
-
41
-
-
0037968357
-
Decapping and decay of messenger RNA occur in cytoplasmic processing bodies
-
Sheth U, Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 2003; 300:805-808.
-
(2003)
Science
, vol.300
, pp. 805-808
-
-
Sheth, U.1
Parker, R.2
-
42
-
-
77954288774
-
Dali server: Conservation mapping in 3D
-
Holm L, Rosenstrom P. Dali server: Conservation mapping in 3D. Nucleic Acids Res 2010; 38:545-549.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 545-549
-
-
Holm, L.1
Rosenstrom, P.2
-
43
-
-
40849094144
-
Crystal structure of Lsm3 octamer from Saccharomyces cerevisiae: Implications for Lsm ring organisation and recruitment
-
Naidoo N, Harrop SJ, Sobti M, et al. Crystal structure of Lsm3 octamer from Saccharomyces cerevisiae: Implications for Lsm ring organisation and recruitment. J Mol Biol 2008; 377:1357-1371.
-
(2008)
J Mol Biol
, vol.377
, pp. 1357-1371
-
-
Naidoo, N.1
Harrop, S.J.2
Sobti, M.3
-
44
-
-
84861216971
-
Crystal Structures of Lsm3 Lsm4 and Lsm5/6/7 from Schizosaccharomyces pombe
-
Wu D, Jiang S, Bowler MW, Song H. Crystal Structures of Lsm3, Lsm4 and Lsm5/6/7 from Schizosaccharomyces pombe. PLoS ONE 2012; 7:e36768.
-
(2012)
PLoS ONE
, vol.7
-
-
Wu, D.1
Jiang, S.2
Bowler, M.W.3
Song, H.4
-
45
-
-
0035022015
-
Multiple functional interactions between components of the Lsm2-Lsm8 complex, U6 snRNA, and the yeast la protein
-
Pannone BK, Kim SD, Noe DA, Wolin SL. Multiple functional interactions between components of the Lsm2-Lsm8 complex, U6 snRNA, and the yeast La protein. Genetics 2001; 158:187-196.
-
(2001)
Genetics
, vol.158
, pp. 187-196
-
-
Pannone, B.K.1
Kim, S.D.2
Noe, D.A.3
Wolin, S.L.4
-
46
-
-
0028202495
-
Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 53 digestion of the transcript
-
Muhlrad D, Decker CJ, Parker R. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 53 digestion of the transcript. Genes Dev 1994; 8:855-866.
-
(1994)
Genes Dev
, vol.8
, pp. 855-866
-
-
Muhlrad, D.1
Decker, C.J.2
Parker, R.3
-
47
-
-
0029791555
-
Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae
-
Hatfield L, Beelman CA, Stevens A, Parker R. Mutations in trans-acting factors affecting mRNA decapping in Saccharomyces cerevisiae. Mol Cell Biol 1996; 16:5830-5838.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 5830-5838
-
-
Hatfield, L.1
Beelman, C.A.2
Stevens, A.3
Parker, R.4
-
48
-
-
0034839596
-
Computational modeling of eukaryotic mRNA turnover
-
Cao D, Parker R. Computational modeling of eukaryotic mRNA turnover. RNA 2001; 7:1192-1212.
-
(2001)
RNA
, vol.7
, pp. 1192-1212
-
-
Cao, D.1
Parker, R.2
-
49
-
-
0034741815
-
The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 3 termini from partial degradation
-
He W, Parker R. The yeast cytoplasmic LsmI/Pat1p complex protects mRNA 3 termini from partial degradation. Genetics 2001; 158:1445-1455.
-
(2001)
Genetics
, vol.158
, pp. 1445-1455
-
-
He, W.1
Parker, R.2
-
50
-
-
0033569743
-
A doughnut-shaped heteromer of human Sm-like proteins binds to the 3-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro
-
Achsel T, Brahms H, Kastner B, et al. A doughnut-shaped heteromer of human Sm-like proteins binds to the 3-end of U6 snRNA, thereby facilitating U4/U6 duplex formation in vitro. EMBO J 1999; 18:5789-5802.
-
(1999)
EMBO J
, vol.18
, pp. 5789-5802
-
-
Achsel, T.1
Brahms, H.2
Kastner, B.3
-
51
-
-
0033517098
-
Characterization of Sm-like proteins in yeast and their association with U6 sn- RNA
-
Mayes AE, Verdone L, Legrain P, Beggs JD. Characterization of Sm-like proteins in yeast and their association with U6 sn- RNA. EMBO J 1999; 18:4321-4331.
-
(1999)
EMBO J
, vol.18
, pp. 4321-4331
-
-
Mayes, A.E.1
Verdone, L.2
Legrain, P.3
Beggs, J.D.4
-
52
-
-
0033564627
-
Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin
-
Salgado-Garrido J, Bragado-Nilsson E, Kandels-Lewis S, Seraphin B. Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin. EMBO J 1999; 18:3451-3462.
-
(1999)
EMBO J
, vol.18
, pp. 3451-3462
-
-
Salgado-Garrido, J.1
Bragado-Nilsson, E.2
Kandels-Lewis, S.3
Seraphin, B.4
-
53
-
-
63649099704
-
Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution
-
Pomeranz Krummel DA, Oubridge C, Leung AK, Li J, Nagai K. Crystal structure of human spliceosomal U1 snRNP at 5.5 A resolution. Nature 2009; 458:475-480.
-
(2009)
Nature
, vol.458
, pp. 475-480
-
-
Pomeranz Krummel, D.A.1
Oubridge, C.2
Leung, A.K.3
Li, J.4
Nagai, K.5
-
54
-
-
79957601559
-
Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis
-
Leung AK, Nagai K, Li J. Structure of the spliceosomal U4 snRNP core domain and its implication for snRNP biogenesis. Nature 2011; 473:536-539.
-
(2011)
Nature
, vol.473
, pp. 536-539
-
-
Leung, A.K.1
Nagai, K.2
Li, J.3
-
55
-
-
81355148453
-
Structure of the LSm657 complex: An assembly intermediate of the LSm1- and LSm2-8 rings
-
Mund M, Neu A, Ullmann J, Neu U, Sprangers R. Structure of the LSm657 complex: An assembly intermediate of the LSm1- and LSm2-8 rings. J Mol Biol 2011; 414:165-176.
-
(2011)
J Mol Biol
, vol.414
, pp. 165-176
-
-
Mund, M.1
Neu, A.2
Ullmann, J.3
Neu, U.4
Sprangers, R.5
-
56
-
-
32144432437
-
The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling
-
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 2006; 22:195-201.
-
(2006)
Bioinformatics
, vol.22
, pp. 195-201
-
-
Arnold, K.1
Bordoli, L.2
Kopp, J.3
Schwede, T.4
-
57
-
-
0036158942
-
Composition and functional characterization of the yeast spliceosomal penta-snRNP
-
Stevens SW, Ryan DE, Ge HY, et al. Composition and functional characterization of the yeast spliceosomal penta-snRNP. Mol Cell 2002; 9:31-44.
-
(2002)
Mol Cell
, vol.9
, pp. 31-44
-
-
Stevens, S.W.1
Ryan, D.E.2
Ge, H.Y.3
-
58
-
-
84862778515
-
Structural basis of substrate binding specificity revealed by the crystal structures of polyamine receptors SpuD and SpuE from Pseudomonas aeruginosa
-
Wu D, Lim SC, Dong Y, et al. Structural basis of substrate binding specificity revealed by the crystal structures of polyamine receptors SpuD and SpuE from Pseudomonas aeruginosa. J Mol Biol 2012; 416:697-712.
-
(2012)
J Mol Biol
, vol.416
, pp. 697-712
-
-
Wu, D.1
Lim, S.C.2
Dong, Y.3
-
59
-
-
77955455725
-
Diffraction cartography: Applying microbeams to macromolecular crystallography sample evaluation and data collection
-
Bowler MW, Guijarro M, Petitdemange S, et al. Diffraction cartography: Applying microbeams to macromolecular crystallography sample evaluation and data collection. Acta Crystallogr D Biol Crystallogr 2010; 66:855-864.
-
(2010)
Acta Crystallogr D Biol Crystallogr
, vol.66
, pp. 855-864
-
-
Bowler, M.W.1
Guijarro, M.2
Petitdemange, S.3
-
60
-
-
77955462798
-
MxCuBE: A synchrotron beamline control environment customized for macromolecular crystallography experiments
-
Gabadinho J, Beteva A, Guijarro M, et al. MxCuBE: A synchrotron beamline control environment customized for macromolecular crystallography experiments. J Synchrotron Radiat 2010; 17:700-707.
-
(2010)
J Synchrotron Radiat
, vol.17
, pp. 700-707
-
-
Gabadinho, J.1
Beteva, A.2
Guijarro, M.3
-
61
-
-
84864865833
-
The use of workflows in the design and implementation of complex experiments in macromolecular crystallography
-
Brockhauser S, Svensson O, Bowler MW, et al. The use of workflows in the design and implementation of complex experiments in macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 2012; 68:975-984.
-
(2012)
Acta Crystallogr D Biol Crystallogr
, vol.68
, pp. 975-984
-
-
Brockhauser, S.1
Svensson, O.2
Bowler, M.W.3
-
62
-
-
0027879008
-
Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants
-
Kabsch W. Automatic processing of rotation diffraction data from crystals of initially unknown symmetry and cell constants. J Appl Crystallogr 1993; 26:795-800.
-
(1993)
J Appl Crystallogr
, vol.26
, pp. 795-800
-
-
Kabsch, W.1
-
65
-
-
84889120137
-
Improved methods for building protein models in electron density maps and the location of errors in these models
-
Jones TA, Zou JY, Cowan SW, Kjeldgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 1991; 47 (Part 2):110-119.
-
(1991)
Acta Crystallogr A
, vol.47
, Issue.PART.2
, pp. 110-119
-
-
Jones, T.A.1
Zou, J.Y.2
Cowan, S.W.3
Kjeldgaard, M.4
-
68
-
-
0035964342
-
Electrostatics of nanosystems: Application to microtubules and the ribosome
-
Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: Application to microtubules and the ribosome. Proc Natl Acad Sci USA 2001; 98:10037-10041.
-
(2001)
Proc Natl Acad Sci USA
, vol.98
, pp. 10037-10041
-
-
Baker, N.A.1
Sept, D.2
Joseph, S.3
Holst, M.J.4
McCammon, J.A.5
-
69
-
-
0032823877
-
Monitoring mRNA decapping activity
-
Zhang S, Williams CJ, Wormington M, Stevens A, Peltz SW. Monitoring mRNA decapping activity. Methods 1999; 17:46-51.
-
(1999)
Methods
, vol.17
, pp. 46-51
-
-
Zhang, S.1
Williams, C.J.2
Wormington, M.3
Stevens, A.4
Peltz, S.W.5
|