메뉴 건너뛰기




Volumn 129, Issue , 2014, Pages 265-272

Sparse semi-supervised learning on low-rank kernel

Author keywords

Graph Laplacian; Low rank approximation; Manifold regularization; Regularized least squares; Semi supervised learning; Sparse regression

Indexed keywords


EID: 84893777179     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.09.033     Document Type: Article
Times cited : (11)

References (38)
  • 1
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
    • M. Belkin, P. Niyogi, Y. Sindhwani, Manifold regularization: a geometric framework for learning from labeled and unlabeled examples, J. Mach. Learn. Res. (2006) 2399-2434.
    • (2006) J. Mach. Learn. Res. , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, Y.3
  • 3
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • in: Annual Conference on Computational Learning Theory
    • A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Annual Conference on Computational Learning Theory, 1998, pp. 92-100.
    • (1998) , pp. 92-100
    • Blum, A.1    Mitchell, T.2
  • 4
    • 50649084677 scopus 로고    scopus 로고
    • Cluster kernels for semi-supervised learning
    • in: Neural Information Processing Systems
    • O. Chapelle, J. Weston, B. Schölkopf, Cluster kernels for semi-supervised learning, in: Neural Information Processing Systems, 2003, pp. 585-592.
    • (2003) , pp. 585-592
    • Chapelle, O.1    Weston, J.2    Schölkopf, B.3
  • 5
    • 33749252873 scopus 로고    scopus 로고
    • MIT Press, O. Chapelle, B. Schölkopf, A. Zien (Eds.)
    • Semi-Supervised Learning 2006, MIT Press. O. Chapelle, B. Schölkopf, A. Zien (Eds.).
    • (2006) Semi-Supervised Learning
  • 7
    • 77956505061 scopus 로고    scopus 로고
    • Two-stage learning kernel algorithms
    • in: International Conference on Machine Learning
    • C. Cortes, M. Mohri, A. Rostamizadeh, Two-stage learning kernel algorithms, in: International Conference on Machine Learning, 2010.
    • (2010)
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 8
    • 84862619225 scopus 로고    scopus 로고
    • Efficient non-parametric function induction in semisupervised learning
    • in: International Workshop on Artificial Intelligence and Statistics
    • O. Delalleau, Y. Bengio, N. Roux, Efficient non-parametric function induction in semisupervised learning, in: International Workshop on Artificial Intelligence and Statistics, 2005, pp. 96-103.
    • (2005) , pp. 96-103
    • Delalleau, O.1    Bengio, Y.2    Roux, N.3
  • 9
    • 70449623573 scopus 로고    scopus 로고
    • An information-theoretic framework to aggregate a Markov chain
    • in: American Control Conference
    • K. Deng, Y. Sun, P.G. Mehta, S.P. Meyn, An information-theoretic framework to aggregate a Markov chain, in: American Control Conference, 2009, pp 731-736.
    • (2009) , pp. 731-736
    • Deng, K.1    Sun, Y.2    Mehta, P.G.3    Meyn, S.P.4
  • 10
    • 29244453931 scopus 로고    scopus 로고
    • On the Nyström method for approximating a gram matrix for improved kernel-based learning
    • Drineas P., Mahoney M.W. On the Nyström method for approximating a gram matrix for improved kernel-based learning. J. Mach. Learn. Res. 2005, 6:2153-2175.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 2153-2175
    • Drineas, P.1    Mahoney, M.W.2
  • 11
    • 0742286179 scopus 로고    scopus 로고
    • Spectral grouping using the Nystrom method
    • IEEE Trans. Pattern Anal. Mach. Intell.
    • C. Fowlkes, S. Belongie, F. Chung, J. Malik, Spectral grouping using the Nystrom method, IEEE Trans. Pattern Anal. Mach. Intell. (2004) 214-225.
    • (2004) , pp. 214-225
    • Fowlkes, C.1    Belongie, S.2    Chung, F.3    Malik, J.4
  • 12
    • 39049145967 scopus 로고    scopus 로고
    • Semisupervised graph-based hyperspectral image classification
    • IEEE Trans. Geosci. Remote Sensing
    • C. Gustavo, T. Marsheva, D. Zhou, Semisupervised graph-based hyperspectral image classification, IEEE Trans. Geosci. Remote Sensing (2007) 3044-3054.
    • (2007) , pp. 3044-3054
    • Gustavo, C.1    Marsheva, T.2    Zhou, D.3
  • 13
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • in: International Conference on Machine Learning
    • T. Joachims, Transductive inference for text classification using support vector machines, in: International Conference on Machine Learning, 1999, pp. 200-209.
    • (1999) , pp. 200-209
    • Joachims, T.1
  • 17
    • 77956555216 scopus 로고    scopus 로고
    • Large graph construction for scalable semi-supervised learning
    • in: International Conference on Machine Learning
    • W. Liu, J. He, S. Chang, Large graph construction for scalable semi-supervised learning, in: International Conference on Machine Learning, 2010.
    • (2010)
    • Liu, W.1    He, J.2    Chang, S.3
  • 18
    • 84862286216 scopus 로고    scopus 로고
    • Sampling techniques for the Nyström method
    • M. Mohri, A. Talwalkar, Sampling techniques for the Nyström method, J. Mach. Learn. Res. (2009) 304-311.
    • (2009) J. Mach. Learn. Res. , pp. 304-311
    • Mohri, M.1    Talwalkar, A.2
  • 19
    • 78149362519 scopus 로고    scopus 로고
    • Semi-supervised learning using sparse eigenfunction
    • in: Neural Information Processing Systems
    • K. Sinha, M. Belkin, Semi-supervised learning using sparse eigenfunction, in: Neural Information Processing Systems, 2009, pp. 1687-1695.
    • (2009) , pp. 1687-1695
    • Sinha, K.1    Belkin, M.2
  • 20
    • 9444285502 scopus 로고    scopus 로고
    • Kernels and regularization on graphs
    • in: Annual Conference on Learning Theory
    • A. Smola, R. Kondor, Kernels and regularization on graphs, in: Annual Conference on Learning Theory, 2003, pp. 144-158.
    • (2003) , pp. 144-158
    • Smola, A.1    Kondor, R.2
  • 21
    • 77954555265 scopus 로고    scopus 로고
    • The Kullback-Leibler rate pseudo-metric for comparing dynamical systems
    • Sun Y., Metha P.G. The Kullback-Leibler rate pseudo-metric for comparing dynamical systems. IEEE Trans. Autom. Control 2010, 55(July (7)):1585-1598.
    • (2010) IEEE Trans. Autom. Control , vol.55 , Issue.7 JULY , pp. 1585-1598
    • Sun, Y.1    Metha, P.G.2
  • 22
    • 78649409198 scopus 로고    scopus 로고
    • Sparse semi-supervised learning using conjugate functions
    • Sun S., Shawe-Taylor J. Sparse semi-supervised learning using conjugate functions. J. Mach. Learn. Res. 2010, 11:2423-2455.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 2423-2455
    • Sun, S.1    Shawe-Taylor, J.2
  • 23
    • 84885841484 scopus 로고    scopus 로고
    • Manifold-preserving graph reduction for sparse semi-supervised learning
    • S. Sun, Z. Hussain, J. Shawe-Taylor, Manifold-preserving graph reduction for sparse semi-supervised learning, Neurocomputing 124 (26) (2014) 13-21.
    • (2014) Neurocomputing , vol.124 , Issue.26 , pp. 13-21
    • Sun, S.1    Hussain, Z.2    Shawe-Taylor, J.3
  • 24
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B 1996, 58:267-288.
    • (1996) J. R. Stat. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 25
    • 84864041407 scopus 로고    scopus 로고
    • Large-scale sparsified manifold regularization
    • Tsang I.W., Kwok J.T. Large-scale sparsified manifold regularization. Neural Inf. Process. Syst. 2006, 19:1401-1408.
    • (2006) Neural Inf. Process. Syst. , vol.19 , pp. 1401-1408
    • Tsang, I.W.1    Kwok, J.T.2
  • 26
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • in: Neural Information Processing Systems
    • C. Williams, M. Seeger, Using the Nyström method to speed up kernel machines, in: Neural Information Processing Systems, 2001, pp. 682-688.
    • (2001) , pp. 682-688
    • Williams, C.1    Seeger, M.2
  • 27
    • 0039722607 scopus 로고    scopus 로고
    • The effect of the input density distribution on kernel-based classifiers
    • in: Proceedings of the 17th International Conference on Machine Learning
    • C. Williams, M. Seeger, The effect of the input density distribution on kernel-based classifiers, in: Proceedings of the 17th International Conference on Machine Learning, 2000, pp. 1159-1166.
    • (2000) , pp. 1159-1166
    • Williams, C.1    Seeger, M.2
  • 28
    • 72749110068 scopus 로고    scopus 로고
    • Semi-supervised learning by sparse representation
    • in: SIAM Conference on Data Mining
    • S. Yan, H. Wang, Semi-supervised learning by sparse representation, in: SIAM Conference on Data Mining, 2009, pp. 792-801.
    • (2009) , pp. 792-801
    • Yan, S.1    Wang, H.2
  • 29
    • 79952307213 scopus 로고    scopus 로고
    • Alternating direction algorithms for l1 problems in compressive sensing
    • Yang J., Zhang Y. Alternating direction algorithms for l1 problems in compressive sensing. SIAM J. Sci. Comput. 2011, 33(1):250-278.
    • (2011) SIAM J. Sci. Comput. , vol.33 , Issue.1 , pp. 250-278
    • Yang, J.1    Zhang, Y.2
  • 30
    • 71149121119 scopus 로고    scopus 로고
    • Prototype vector machine for large scale semi-supervised learning
    • in: International Conference on Machine Learning
    • K. Zhang, J.T. Kwok, Prototype vector machine for large scale semi-supervised learning, in: International Conference on Machine Learning, 2009, pp. 1233-1240.
    • (2009) , pp. 1233-1240
    • Zhang, K.1    Kwok, J.T.2
  • 31
    • 56449087564 scopus 로고    scopus 로고
    • Improved Nyström low-rank approximation and error analysis
    • in: International Conference on Machine Learning
    • K. Zhang, I. Tsang, J.T. Kwok, Improved Nyström low-rank approximation and error analysis, in: International Conference on Machine Learning, 2008, pp. 1232-1239.
    • (2008) , pp. 1232-1239
    • Zhang, K.1    Tsang, I.2    Kwok, J.T.3
  • 32
    • 84867115296 scopus 로고    scopus 로고
    • Inductive kernel low-rank decomposition with priors
    • in: International Conference on Machine Learning
    • K. Zhang, L. Lan, J. Liu, A. Rauber, F. Moerchen, Inductive kernel low-rank decomposition with priors, in: International Conference on Machine Learning, 2012, pp. 305-312.
    • (2012) , pp. 305-312
    • Zhang, K.1    Lan, L.2    Liu, J.3    Rauber, A.4    Moerchen, F.5
  • 33
    • 84893789401 scopus 로고    scopus 로고
    • Covariate shift in Hilbert space: a surrogate kernel approach
    • in: International Conference on Machine Learning
    • K. Zhang, W. Zheng, Q. Wang, J.T. Kwok, Q. Yang, I. Marsic, Covariate shift in Hilbert space: a surrogate kernel approach, in: International Conference on Machine Learning, 2013, pp. 388-395.
    • (2013) , pp. 388-395
    • Zhang, K.1    Zheng, W.2    Wang, Q.3    Kwok, J.T.4    Yang, Q.5    Marsic, I.6
  • 35
    • 33745456231 scopus 로고    scopus 로고
    • Semi-Supervised Learning Literature Survey
    • Technical Report, Department of Computer Science, University of Wisconsin-Madison
    • X. Zhu. Semi-Supervised Learning Literature Survey, Technical Report, Department of Computer Science, University of Wisconsin-Madison, 2006.
    • (2006)
    • Zhu, X.1
  • 36
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using gaussian fields and harmonic functions
    • in: International Conference on Machine Learning
    • X. Zhu, Z. Ghahramani, J. Lafferty, Semi-supervised learning using gaussian fields and harmonic functions, in: International Conference on Machine Learning, 2003, pp. 912-919.
    • (2003) , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 37
  • 38
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive LASSO and its oracle properties
    • Zou H. The adaptive LASSO and its oracle properties. J. Am. Stat. Assoc. 2006, 101(476):1418-1429.
    • (2006) J. Am. Stat. Assoc. , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.