메뉴 건너뛰기




Volumn , Issue , 2008, Pages 515-522

Using multiple SVM models for unbalanced credit scoring data sets

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA HANDLING; MACHINE LEARNING;

EID: 84879561327     PISSN: 14318814     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-78246-9_61     Document Type: Conference Paper
Times cited : (8)

References (9)
  • 2
    • 84867038939 scopus 로고    scopus 로고
    • Experiments with classifier combining rules
    • Kittler, J. and Roli, F. (Eds.): MCS 2000, Springer, Berlin
    • DUIN, R.P.W. and TAX, D.M.J. (2000): Experiments with Classifier Combining Rules. In: Kittler, J. and Roli, F. (Eds.): MCS 2000, LNCS 1857. Springer, Berlin, 16-19.
    • (2000) LNCS , vol.1857 , pp. 16-19
    • Duin, R.P.W.1    Tax, D.M.J.2
  • 6
    • 33645596472 scopus 로고    scopus 로고
    • Support vector machines for credit scoring: Extension to non standard cases
    • Baier, D. andWernecke, K.-D. (Eds.): Springer, Berlin
    • SCHEBESCH, K.B. and STECKING, R. (2005a): Support Vector Machines for Credit Scoring: Extension to Non Standard Cases. In: Baier, D. andWernecke, K.-D. (Eds.): Innovations in Classification, Data Science and Information Systems. Springer, Berlin, 498-505.
    • (2005) Innovations in Classification, Data Science and Information Systems , pp. 498-505
    • Schebesch, K.B.1    Stecking, R.2
  • 7
    • 24144458623 scopus 로고    scopus 로고
    • Support vector machines for credit applicants: Detecting typical and critical regions
    • SCHEBESCH, K.B. and STECKING, R. (2005b): Support vector machines for credit applicants: detecting typical and critical regions. Journal of the Operational Research Society, 56(9), 1082-1088.
    • (2005) Journal of the Operational Research Society , vol.56 , Issue.9 , pp. 1082-1088
    • Schebesch, K.B.1    Stecking, R.2
  • 8
    • 84879562120 scopus 로고    scopus 로고
    • Selecting SVM Kernels and input variable subsets in credit scoring models
    • Decker, R. and Lenz, H.-J. (Eds.): Springer, Berlin
    • SCHEBESCH, K.B. and STECKING, R. (2007): Selecting SVM Kernels and Input Variable Subsets in Credit Scoring Models. In: Decker, R. and Lenz, H.-J. (Eds.): Advances in Data Analysis. Springer, Berlin, 179-186.
    • (2007) Advances in Data Analysis. , pp. 179-186
    • Schebesch, K.B.1    Stecking, R.2
  • 9
    • 84879594790 scopus 로고    scopus 로고
    • Comparing and selecting SVM-Kernels for credit scoring
    • Spiliopoulou, M., Kruse, R., Borgelt, C., Nürnberger, A., Gaul, W. (Eds.): Springer, Berlin
    • STECKING, R. and SCHEBESCH, K.B. (2006): Comparing and Selecting SVM-Kernels for Credit Scoring. In: Spiliopoulou, M., Kruse, R., Borgelt, C., Nürnberger, A., Gaul, W. (Eds.): From Data and Information Analysis to Knowledge Engineering. Springer, Berlin, 542-549.
    • (2006) From Data and Information Analysis to Knowledge Engineering , pp. 542-549
    • Stecking, R.1    Schebesch, K.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.