메뉴 건너뛰기




Volumn 73, Issue 10-12, 2010, Pages 1550-1555

Multilinear principal component analysis for face recognition with fewer features

Author keywords

Face recognition; Multilinear principal component analysis; Nearest neighbor classifier; Support vector machine

Indexed keywords

CLASSIFICATION METHODS; DATA SETS; NEAREST NEIGHBOR CLASSIFIER; RECOGNITION ACCURACY;

EID: 77952548066     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.08.022     Document Type: Article
Times cited : (37)

References (31)
  • 4
    • 0036477056 scopus 로고    scopus 로고
    • Face recognition using kernel principal component analysis
    • Kim K., Jung K., Kim H.J. Face recognition using kernel principal component analysis. IEEE Signal Processing Letters 2002, 9(2).
    • (2002) IEEE Signal Processing Letters , vol.9 , Issue.2
    • Kim, K.1    Jung, K.2    Kim, H.J.3
  • 5
    • 0742268833 scopus 로고    scopus 로고
    • Two-dimensional PCA: a new approach to appearance-based face representation and recognition
    • Yang J., Zhang D., et al. Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 2004, 26(1):131-137.
    • (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.26 , Issue.1 , pp. 131-137
    • Yang, J.1    Zhang, D.2
  • 6
    • 34147190015 scopus 로고    scopus 로고
    • 1D-PCA, 2D-PCA to nD-PCA, in: The 18th International Conference on Pattern Recognition.
    • H. Yu, M. Bennamoun, 1D-PCA, 2D-PCA to nD-PCA, in: The 18th International Conference on Pattern Recognition, 2006.
    • (2006)
    • Yu, H.1    Bennamoun, M.2
  • 7
    • 27244459464 scopus 로고    scopus 로고
    • Comparing robustness of two-dimensional PCA and eigenfaces for face recognition, in: ICIAR 2004, Lecture Notes in Computer Science.
    • M. Visani, C. Garcia, C. Laurent, Comparing robustness of two-dimensional PCA and eigenfaces for face recognition, in: ICIAR 2004, Lecture Notes in Computer Science, vol. 3212, 2004, pp. 717-724.
    • (2004) , vol.3212 , pp. 717-724
    • Visani, M.1    Garcia, C.2    Laurent, C.3
  • 8
    • 34147192588 scopus 로고    scopus 로고
    • Complete two-dimensional PCA for face recognition, in: The 18th International Conference on Pattern Recognition.
    • A. Xu, X. Jin, Y. Jiang, P. Guo, Complete two-dimensional PCA for face recognition, in: The 18th International Conference on Pattern Recognition, 2006.
    • (2006)
    • Xu, A.1    Jin, X.2    Jiang, Y.3    Guo, P.4
  • 9
    • 56549116306 scopus 로고    scopus 로고
    • Double sides 2DPCA for face recognition, in: Lecture Notes in Computer Science.Proceedings of the 4th International Conference on Intelligent Computing: Advanced Intelligent Computing Theories and Applications-with Aspects of Theoretical and Methodological Issues.
    • C. Lu, W. Liu, X. Liu, S. An, Double sides 2DPCA for face recognition, in: Lecture Notes in Computer Science, vol. 5226, Proceedings of the 4th International Conference on Intelligent Computing: Advanced Intelligent Computing Theories and Applications-with Aspects of Theoretical and Methodological Issues, 2008, pp. 446-459.
    • (2008) , vol.5226 , pp. 446-459
    • Lu, C.1    Liu, W.2    Liu, X.3    An, S.4
  • 11
    • 27744538589 scopus 로고    scopus 로고
    • Generalized 2d pca for face image representation and recognition
    • (Special issue: IJCNN 2005)
    • Kong H., Wang L., Teoh E.K., Li X., Wang J., Venkateswarlu R. Generalized 2d pca for face image representation and recognition. Neural Networks 2005, 18(5-6):585-594. (Special issue: IJCNN 2005).
    • (2005) Neural Networks , vol.18 , Issue.5-6 , pp. 585-594
    • Kong, H.1    Wang, L.2    Teoh, E.K.3    Li, X.4    Wang, J.5    Venkateswarlu, R.6
  • 12
    • 27844449908 scopus 로고    scopus 로고
    • (2d)2 PCA: two-directional two-dimensional PCA for efficient face representation and recognition
    • Zhang D., Zhou Z. (2d)2 PCA: two-directional two-dimensional PCA for efficient face representation and recognition. Neurocomputing 2005, 69(1-3):224-231.
    • (2005) Neurocomputing , vol.69 , Issue.1-3 , pp. 224-231
    • Zhang, D.1    Zhou, Z.2
  • 13
    • 33846365956 scopus 로고    scopus 로고
    • Image covariance-based subspace method for face recognition
    • Kim C., Choi C. Image covariance-based subspace method for face recognition. Pattern Recognition 2007, 40(5):1592-1604.
    • (2007) Pattern Recognition , vol.40 , Issue.5 , pp. 1592-1604
    • Kim, C.1    Choi, C.2
  • 14
    • 33745633393 scopus 로고    scopus 로고
    • New feature extraction approaches for face recognition, in: Lecture Notes in Computer Science.
    • V. Nhat, S. Lee, New feature extraction approaches for face recognition, in: Lecture Notes in Computer Science, vol. 3809/2005, pp. 489-497.
    • (2005) , vol.3809 , pp. 489-497
    • Nhat, V.1    Lee, S.2
  • 15
    • 38349057308 scopus 로고    scopus 로고
    • Random subspace two-dimensional PCA for face recognition, in: Lecture Notes in Computer Science, Advances in Multimedia Information Processing-PCM 2007, December.
    • N. Nguyen, W. Liu, S. Venkates, Random subspace two-dimensional PCA for face recognition, in: Lecture Notes in Computer Science, vol. 4810, Advances in Multimedia Information Processing-PCM 2007, December 2007, pp. 655-664.
    • (2007) , vol.4810 , pp. 655-664
    • Nguyen, N.1    Liu, W.2    Venkates, S.3
  • 16
    • 46749093451 scopus 로고    scopus 로고
    • Two-dimensional random subspace analysis for face recognition, in: International Symposium on Communications and Information Technologies, 2007, 17-19 October
    • P. Sanguansat, W. Asdornwised, S. Marukatat, S. Jitapunkul, Two-dimensional random subspace analysis for face recognition, in: International Symposium on Communications and Information Technologies, 2007, 17-19 October 2007, pp. 628-631.
    • (2007) , pp. 628-631
    • Sanguansat, P.1    Asdornwised, W.2    Marukatat, S.3    Jitapunkul, S.4
  • 17
    • 44649124427 scopus 로고    scopus 로고
    • An approach for directly extracting features from matrix data and its application in face recognition
    • Xu Y., Zhang D., Yang J., Yang J. An approach for directly extracting features from matrix data and its application in face recognition. Neurocomputing 2008, 71(10-12):1857-1865.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 1857-1865
    • Xu, Y.1    Zhang, D.2    Yang, J.3    Yang, J.4
  • 18
    • 56449090170 scopus 로고    scopus 로고
    • PaImprint recognition using Gabor feature-based (2D)(2)PCA
    • Pan X., Ruan Q. PaImprint recognition using Gabor feature-based (2D)(2)PCA. Neurocomputing August 2008, 71(13-15):3032-3036.
    • (2008) Neurocomputing , vol.71 , Issue.13-15 , pp. 3032-3036
    • Pan, X.1    Ruan, Q.2
  • 19
    • 58149471067 scopus 로고    scopus 로고
    • A new framework to combine vertical and horizontal information for face recognition
    • Yu W., Wang Z., Chen W. A new framework to combine vertical and horizontal information for face recognition. Neurocomputing 2009, 72(4-6):1084-1091.
    • (2009) Neurocomputing , vol.72 , Issue.4-6 , pp. 1084-1091
    • Yu, W.1    Wang, Z.2    Chen, W.3
  • 20
    • 34047223474 scopus 로고    scopus 로고
    • Multilinear principal component analysis of tensor objects for recognition, in: The 18th International Conference on Pattern Recognition.
    • H. Lu, K.N. Plataniotis, A.N. Venetsanopoulos, multilinear principal component analysis of tensor objects for recognition, in: The 18th International Conference on Pattern Recognition, 2006.
    • (2006)
    • Lu, H.1    Plataniotis, K.N.2    Venetsanopoulos, A.N.3
  • 22
    • 44649106875 scopus 로고    scopus 로고
    • Tensor rank one discriminant analysis-a convergent method for discriminative multilinear subspace selection
    • Tao D., Li X., Wu X., Maybank S. Tensor rank one discriminant analysis-a convergent method for discriminative multilinear subspace selection. Neurocomputing 2008, 71(10-12):1866-1882.
    • (2008) Neurocomputing , vol.71 , Issue.10-12 , pp. 1866-1882
    • Tao, D.1    Li, X.2    Wu, X.3    Maybank, S.4
  • 25
    • 69949092704 scopus 로고    scopus 로고
    • A comparative study of multilinear principal component analysis for face recognition, AIPR, in: 2008 37th IEEE Applied Imagery Pattern Recognition Workshop
    • J. Wang, Y. Chen, M. Adjouadi, A comparative study of multilinear principal component analysis for face recognition, AIPR, in: 2008 37th IEEE Applied Imagery Pattern Recognition Workshop, 2008, pp. 1-6.
    • (2008) , pp. 1-6
    • Wang, J.1    Chen, Y.2    Adjouadi, M.3
  • 27
    • 24644492476 scopus 로고    scopus 로고
    • Random subspaces and subsampling for 2-D face recognition, in: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
    • N.V. Chawla, K. Bowyer, Random subspaces and subsampling for 2-D face recognition, in: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, 2005, pp. 582-589.
    • (2005) , vol.2 , pp. 582-589
    • Chawla, N.V.1    Bowyer, K.2
  • 28
    • 77952545788 scopus 로고    scopus 로고
    • AT&T The database of faces, Online available.
    • AT&T The database of faces, Online available. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.
  • 29
    • 77952541194 scopus 로고    scopus 로고
    • Face Recognition Data, University of Essex, UK. Online available.
    • Face Recognition Data, University of Essex, UK. Online available. http://cswww.essex.ac.uk/mv/allfaces/index.html.
  • 30
    • 77952545138 scopus 로고    scopus 로고
    • Georgia Tech face database, Online available.
    • Georgia Tech face database, Online available. http://www.anefian.com/facereco.htm.
  • 31
    • 77952547139 scopus 로고    scopus 로고
    • LIBSVM: A Library for Support Vector Machines, 2001. Software available at.
    • C.C. Chang, C.J. Lin, LIBSVM: A Library for Support Vector Machines, 2001. Software available at. http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • Chang, C.C.1    Lin, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.