메뉴 건너뛰기




Volumn 72, Issue 13-15, 2009, Pages 3066-3076

Partial Lanczos extreme learning machine for single-output regression problems

Author keywords

Extreme learning machine; Generalized cross validation; Lanczos bidiagonalization; Regularization; Singular value decomposition

Indexed keywords

INVERSE PROBLEMS; ITERATIVE METHODS; KNOWLEDGE ACQUISITION; LEARNING SYSTEMS;

EID: 78049530568     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.03.016     Document Type: Article
Times cited : (61)

References (44)
  • 1
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • G.B. Huang, Q.Y. Zhu, C.K. Siew, Extreme learning machine: theory and applications, Neurocomputing 70 (1-3) (2006) 489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 4
    • 34547992213 scopus 로고    scopus 로고
    • Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis
    • R.X. Zhang, G.B. Huang, N. Sundararajan, P. Saratchandran, Multicategory classification using an extreme learning machine for microarray gene expression cancer diagnosis, IEEE ACM Trans. Comput. Biol. Bioinformatics 4 (3) (2007) 485-495.
    • (2007) IEEE ACM Trans. Comput. Biol. Bioinformatics , vol.4 , Issue.3 , pp. 485-495
    • Zhang, R.X.1    Huang, G.B.2    Sundararajan, N.3    Saratchandran, P.4
  • 5
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • G.B. Huang, L. Chen, C.K. Siew, Universal approximation using incremental constructive feedforward networks with random hidden nodes, IEEE Trans. Neural Networks 17 (4) (2006) 879-892.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.B.1    Chen, L.2    Siew, C.K.3
  • 6
    • 33748432957 scopus 로고    scopus 로고
    • Improved extreme learning machine for function approximation by encoding a priori information
    • F. Han, D.S. Huang, Improved extreme learning machine for function approximation by encoding a priori information, Neurocomputing 69 (16-18) (2006) 2369-2373.
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2369-2373
    • Han, F.1    Huang, D.S.2
  • 7
    • 49249135950 scopus 로고    scopus 로고
    • Power utility nontechnical loss analysis with extreme learning machine method
    • A.H. Nizar, Z.Y. Dong, Y. Wang, Power utility nontechnical loss analysis with extreme learning machine method, IEEE Trans. Power Syst. 23 (3) (2008) 946-955.
    • (2008) IEEE Trans. Power Syst. , vol.23 , Issue.3 , pp. 946-955
    • Nizar, A.H.1    Dong, Z.Y.2    Wang, Y.3
  • 9
    • 55949118135 scopus 로고    scopus 로고
    • A protein secondary structure prediction framework based on the Extreme Learning Machine
    • G. Wang, Y. Zhao, D. Wang, A protein secondary structure prediction framework based on the Extreme Learning Machine, Neurocomputing 72 (1-3) (2008) 262-268.
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 262-268
    • Wang, G.1    Zhao, Y.2    Wang, D.3
  • 10
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • G.-B. Huang, L. Chen, Enhanced random search based incremental extreme learning machine, Neurocomputing 71 (16-18) (2008) 3460-3468.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 11
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • G.B. Huang, L. Chen, Convex incremental extreme learning machine, Neurocomputing 70 (16-18) (2007) 3056-3062.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.B.1    Chen, L.2
  • 12
    • 38649131505 scopus 로고    scopus 로고
    • Incremental extreme learning machine with fully complex hidden nodes
    • G.B. Huang, M.B. Li, L. Chen, C.K. Siew, Incremental extreme learning machine with fully complex hidden nodes, Neurocomputing 71 (4-6) (2008) 576-583.
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 576-583
    • Huang, G.B.1    Li, M.B.2    Chen, L.3    Siew, C.K.4
  • 14
    • 38649135451 scopus 로고    scopus 로고
    • Linear programming minimum sphere set covering for extreme learning machines
    • X.K. Wei, Y.H. Li, Linear programming minimum sphere set covering for extreme learning machines, Neurocomputing 71 (4-6) (2008) 570-575.
    • (2008) Neurocomputing , vol.71 , Issue.4-6 , pp. 570-575
    • Wei, X.K.1    Li, Y.H.2
  • 15
    • 55949132682 scopus 로고    scopus 로고
    • A fast pruned-extreme learning machine for classification problem
    • H.-J. Rong, Y.-S. Ong, A.-H. Tan, Z. Zhu, A fast pruned-extreme learning machine for classification problem, Neurocomputing 72 (1-3) (2008) 359-366.
    • (2008) Neurocomputing , vol.72 , Issue.1-3 , pp. 359-366
    • Rong, H.-J.1    Ong, Y.-S.2    Tan, A.-H.3    Zhu, Z.4
  • 16
    • 33746916409 scopus 로고    scopus 로고
    • Real-time learning capability of neural networks
    • G.B. Huang, Q.Y. Zhu, C.K. Siew, Real-time learning capability of neural networks, IEEE Trans. Neural Networks 17 (4) (2006) 863-878.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.4 , pp. 863-878
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 17
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feedforward networks
    • N.Y. Liang, G.B. Huang, P. Saratchandran, N. Sundararajan, A fast and accurate online sequential learning algorithm for feedforward networks, IEEE Trans. Neural Networks 17 (6) (2006) 1411-1423.
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.Y.1    Huang, G.B.2    Saratchandran, P.3    Sundararajan, N.4
  • 18
    • 0004236492 scopus 로고    scopus 로고
    • third ed., Johns Hopkins University Press, Maryland
    • G.H. Golub, C.F.V. Loan, Matrix Computations, third ed., Johns Hopkins University Press, Maryland, 1996.
    • (1996) Matrix Computations
    • Golub, G.H.1    Loan, C.F.V.2
  • 22
    • 34247268531 scopus 로고    scopus 로고
    • A hybrid reconstruction algorithm for electrical impedance tomography
    • L. Hu, H. Wang, B. Zhao, W. Yang, A hybrid reconstruction algorithm for electrical impedance tomography, Meas. Sci. Technol. 18 (3) (2007) 813-818.
    • (2007) Meas. Sci. Technol. , vol.18 , Issue.3 , pp. 813-818
    • Hu, L.1    Wang, H.2    Zhao, B.3    Yang, W.4
  • 23
    • 0034510473 scopus 로고    scopus 로고
    • Low-rank matrix approximation using the Lanczos bidiagonalization process with applications
    • H.D. Simon, H.Y. Zha, Low-rank matrix approximation using the Lanczos bidiagonalization process with applications, SIAM J. Sci. Comput. 21 (6) (2000) 2257-2274.
    • (2000) SIAM J. Sci. Comput. , vol.21 , Issue.6 , pp. 2257-2274
    • Simon, H.D.1    Zha, H.Y.2
  • 24
    • 2342524089 scopus 로고    scopus 로고
    • Partial least-squares vs. Lanczos bidiagonalization-I: Analysis of a projection method for multiple regression
    • L. Elden, Partial least-squares vs. Lanczos bidiagonalization-I: analysis of a projection method for multiple regression, Comput. Stat. Data Anal. 46 (1) (2004) 11-31.
    • (2004) Comput. Stat. Data Anal. , vol.46 , Issue.1 , pp. 11-31
    • Elden, L.1
  • 25
    • 33847257340 scopus 로고    scopus 로고
    • Restarted block Lanczos bidiagonalization methods
    • J. Baglama, L. Reichel, Restarted block Lanczos bidiagonalization methods, Numer. Algorithm 43 (3) (2006) 251-272.
    • (2006) Numer. Algorithm , vol.43 , Issue.3 , pp. 251-272
    • Baglama, J.1    Reichel, L.2
  • 26
    • 0035537408 scopus 로고    scopus 로고
    • Choosing regularization parameters in iterative methods for ill-posed problems
    • M.E. Kilmer, D.P. O'Leary, Choosing regularization parameters in iterative methods for ill-posed problems, SIAM J. Matrix Anal. Appl. 22 (4) (2001) 1204-1221.
    • (2001) SIAM J. Matrix Anal. Appl. , vol.22 , Issue.4 , pp. 1204-1221
    • Kilmer, M.E.1    O'leary, D.P.2
  • 27
    • 34548337027 scopus 로고    scopus 로고
    • Greedy Tikhonov regularization for large linear ill-posed problems
    • L. Reichel, H. Sadok, A. Shyshkov, Greedy Tikhonov regularization for large linear ill-posed problems, Int. J. Comput. Math. 84 (8) (2007) 1151-1166.
    • (2007) Int. J. Comput. Math. , vol.84 , Issue.8 , pp. 1151-1166
    • Reichel, L.1    Sadok, H.2    Shyshkov, A.3
  • 28
    • 4043103309 scopus 로고    scopus 로고
    • Tikhonov regularization of large linear problems
    • D. Calvetti, L. Reichel, Tikhonov regularization of large linear problems, Bit 43 (2) (2003) 263-283.
    • (2003) Bit , vol.43 , Issue.2 , pp. 263-283
    • Calvetti, D.1    Reichel, L.2
  • 29
    • 14544268237 scopus 로고    scopus 로고
    • Tikhonov regularization with a solution constraint
    • D. Calvetti, L. Reichel, Tikhonov regularization with a solution constraint, SIAM J. Sci. Comput. 26 (1) (2004) 224-239.
    • (2004) SIAM J. Sci. Comput. , vol.26 , Issue.1 , pp. 224-239
    • Calvetti, D.1    Reichel, L.2
  • 30
    • 0001765884 scopus 로고
    • An implicit shift bidiagonalization algorithm for ill-posed systems
    • A. Bjorck, E. Grimme, P. Vandooren, An implicit shift bidiagonalization algorithm for ill-posed systems, Bit 34 (4) (1994) 510-534.
    • (1994) Bit , vol.34 , Issue.4 , pp. 510-534
    • Bjorck, A.1    Grimme, E.2    Vandooren, P.3
  • 32
    • 33244482488 scopus 로고    scopus 로고
    • Augmented implicitly restarted Lanczos bidiagonalization methods
    • J. Baglama, L. Reichel, Augmented implicitly restarted Lanczos bidiagonalization methods, SIAM J. Sci. Comput. 27 (1) (2005) 19-42.
    • (2005) SIAM J. Sci. Comput. , vol.27 , Issue.1 , pp. 19-42
    • Baglama, J.1    Reichel, L.2
  • 34
    • 0039943513 scopus 로고
    • LSQR: An algorithm for sparse linear equations and sparse least squares
    • C.C. Paige, M.A. Saunders, LSQR: an algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software 8 (1) (1982) 43-71.
    • (1982) ACM Trans. Math. Software , vol.8 , Issue.1 , pp. 43-71
    • Paige, C.C.1    Saunders, M.A.2
  • 35
    • 0000767453 scopus 로고
    • On the rates of convergence of the Lanczos and the block-Lanczos methods
    • Y. Saad, On the rates of convergence of the Lanczos and the block-Lanczos methods, SIAM J. Numer. Anal. 17 (5) (1980) 687-706.
    • (1980) SIAM J. Numer. Anal. , vol.17 , Issue.5 , pp. 687-706
    • Saad, Y.1
  • 36
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • G.H. Golub, M.T. Heath, G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics 21 (1979) 215-223.
    • (1979) Technometrics , vol.21 , pp. 215-223
    • Golub, G.H.1    Heath, M.T.2    Wahba, G.3
  • 37
    • 33845967096 scopus 로고    scopus 로고
    • Fast generalized cross-validation algorithm for sparse model learning
    • S. Sundararajan, S. Shevade, S.S. Keerthi, Fast generalized cross-validation algorithm for sparse model learning, Neural Comput. 19 (1) (2007) 283-301.
    • (2007) Neural Comput. , vol.19 , Issue.1 , pp. 283-301
    • Sundararajan, S.1    Shevade, S.2    Keerthi, S.S.3
  • 38
    • 44449133545 scopus 로고    scopus 로고
    • Strong robust generalized cross-validation for choosing the regularization parameter
    • M.A. Lukas, Strong robust generalized cross-validation for choosing the regularization parameter, Inverse Probl. 24 (3) (2008) 034066.
    • (2008) Inverse Probl. , vol.24 , Issue.3 , pp. 034066
    • Lukas, M.A.1
  • 39
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A.J. Smola, B. Schölkopf, A tutorial on support vector regression, Stat. Comput. 14 (3)(2004)199-222.
    • (2004) Stat. Comput. , vol.14 , Issue.3 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 40
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository, University of California, School of Information and Computer Science, Irvine, CA, 2007, < http://www.ics.uci.edu/~mlearn/MLRepositoryhtml>.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 43
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T.G. Dietterich, Approximate statistical tests for comparing supervised classification learning algorithms, Neural Comput. 10 (7) (1998) 1895-1923.
    • (1998) Neural Comput. , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 44
    • 85030587216 scopus 로고    scopus 로고
    • MathWorks
    • MathWorks, Inc.
    • MathWorks, Compiler execution speed comparison [Online]. Available: < http://www.mathworks.com/products/compiler/examples/example2.shtml>, MathWorks, Inc., 2003.
    • (2003) Compiler execution speed comparison


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.