-
1
-
-
0029205963
-
Channel equalization using adaptive complex radial basis function networks
-
I. Cha S.A. Kassam Channel equalization using adaptive complex radial basis function networks IEEE J. Sel. Area. Comm. 13 1 1995 122-131
-
(1995)
IEEE J. Sel. Area. Comm.
, vol.13
, Issue.1
, pp. 122-131
-
-
Cha, I.1
Kassam, S.A.2
-
2
-
-
0037361264
-
Learning capability and storage capacity of two-hidden-layer feedforward networks
-
G.-B. Huang Learning capability and storage capacity of two-hidden-layer feedforward networks IEEE T. Neural Networ. 14 2 2003 274-281
-
(2003)
IEEE T. Neural Networ.
, vol.14
, Issue.2
, pp. 274-281
-
-
Huang, G.-B.1
-
3
-
-
0034187311
-
Classification ability of single hidden layer feedforward neural networks
-
G.-B. Huang Y.-Q. Chen H.A. Babri Classification ability of single hidden layer feedforward neural networks IEEE T. Neural Networ. 11 3 2000 799-801
-
(2000)
IEEE T. Neural Networ.
, vol.11
, Issue.3
, pp. 799-801
-
-
Huang, G.-B.1
Chen, Y.-Q.2
Babri, H.A.3
-
4
-
-
21244456913
-
Extreme learning machine: RBF network case
-
Proceedings of the Eighth International Conference on Control, Automation, Robotics and Vision (ICARCV, 2004) 6-9 December, 2004, Kunming, China
-
G.-B. Huang, C.-K. Siew, Extreme learning machine: RBF network case, in: Proceedings of the Eighth International Conference on Control, Automation, Robotics and Vision (ICARCV 2004), 6-9 December, 2004, Kunming, China
-
-
-
Huang, G.-B.1
Siew, C.-K.2
-
5
-
-
33645588429
-
Extreme learning machine with randomly assigned RBF kernels
-
G.-B. Huang C.-K. Siew Extreme learning machine with randomly assigned RBF kernels Inter. J. Inform. Tech. 11 1 2005
-
(2005)
Inter. J. Inform. Tech.
, vol.11
, Issue.1
-
-
Huang, G.-B.1
Siew, C.-K.2
-
6
-
-
10944272650
-
Extreme learning machine: A new learning scheme of feedforward neural networks
-
Proceedings of International Joint Conference on Neural Networks (IJCNN2004), 25-29 July, 2004, Budapest, Hungary
-
G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: A new learning scheme of feedforward neural networks, in: Proceedings of International Joint Conference on Neural Networks (IJCNN2004), 25-29 July, 2004, Budapest, Hungary.
-
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
7
-
-
33645586505
-
Extreme learning machine: Theory and applications
-
submitted
-
G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: Theory and applications, Neurocomputing, 2005, submitted.
-
(2005)
Neurocomputing
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
8
-
-
0036565527
-
Communication channel equalization using complex-valued minimal radial basis function neural networks
-
D. Jianping N. Sundararajan P. Saratchandran Communication channel equalization using complex-valued minimal radial basis function neural networks IEEE T. Neural Networ. 13 3 2002 687-696
-
(2002)
IEEE T. Neural Networ.
, vol.13
, Issue.3
, pp. 687-696
-
-
Jianping, D.1
Sundararajan, N.2
Saratchandran, P.3
-
9
-
-
0034852531
-
Complex backpropagation neural network using elementary transcendental activation functions
-
May Salt Lake City, UT
-
T. Kim, T. Adali, Complex backpropagation neural network using elementary transcendental activation functions, in: Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP), vol. 2, May 2001, Salt Lake City, UT, pp. 1281-1284.
-
(2001)
Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing (ICASSP)
, vol.2
, pp. 1281-1284
-
-
Kim, T.1
Adali, T.2
-
10
-
-
0038159963
-
Approximation by fully complex multilayer perceptrons
-
T. Kim T. Adali Approximation by fully complex multilayer perceptrons Neural Comput. 15 7 2003 1641-1666
-
(2003)
Neural Comput.
, vol.15
, Issue.7
, pp. 1641-1666
-
-
Kim, T.1
Adali, T.2
-
11
-
-
0003538319
-
-
New York and London: Plenum Press
-
J.M. Ortega Matrix Theory 1987 Plenum Press New York and London
-
(1987)
Matrix Theory
-
-
Ortega, J.M.1
-
13
-
-
0031100287
-
Capabilities of a four-layered feedforward neural network: Four layers versus three
-
S. Tamura M. Tateishi Capabilities of a four-layered feedforward neural network: Four layers versus three IEEE T. Neural Networ. 8 2 1997 251-255
-
(1997)
IEEE T. Neural Networ.
, vol.8
, Issue.2
, pp. 251-255
-
-
Tamura, S.1
Tateishi, M.2
|