메뉴 건너뛰기




Volumn 128, Issue , 2014, Pages 433-446

Short, medium and long term forecasting of time series using the L-Co-R algorithm

Author keywords

Coevolutionary algorithms; Neural networks; Significant lags; Time series forecasting; Variable term horizon

Indexed keywords

CO-EVOLUTIONARY ALGORITHM; LONG-TERM FORECASTING; PREDICTION HORIZON; RADIAL BASIS FUNCTION NEURAL NETWORKS; RADIAL BASIS NEURAL NETWORKS; SIGNIFICANT LAGS; TIME SERIES FORECASTING; VARIABLE TERM HORIZON;

EID: 84893663143     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.08.023     Document Type: Article
Times cited : (17)

References (72)
  • 2
    • 84861009134 scopus 로고    scopus 로고
    • Coevolution of lags and RBFNs for time series forecasting. L-Co-R algorithm
    • Parras-Gutierrez E., Garcia-Arenas M., Rivas V., del Jesus M. Coevolution of lags and RBFNs for time series forecasting. L-Co-R algorithm. Soft Comput. 2012, 16(6):919-942.
    • (2012) Soft Comput. , vol.16 , Issue.6 , pp. 919-942
    • Parras-Gutierrez, E.1    Garcia-Arenas, M.2    Rivas, V.3    del Jesus, M.4
  • 3
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead D., Lowe D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988, 2:321-355.
    • (1988) Complex Syst. , vol.2 , pp. 321-355
    • Broomhead, D.1    Lowe, D.2
  • 4
    • 33745952342 scopus 로고    scopus 로고
    • 25 years of time series forecasting
    • De Gooijer J., Hyndman R. 25 years of time series forecasting. Int. J. Forecast. 2006, 22(3):443-473.
    • (2006) Int. J. Forecast. , vol.22 , Issue.3 , pp. 443-473
    • De Gooijer, J.1    Hyndman, R.2
  • 7
    • 0000082693 scopus 로고
    • Forecasting sales by exponentially weighted moving averages
    • Winters P. Forecasting sales by exponentially weighted moving averages. Manage. Sci. 1960, 6(3):324-342.
    • (1960) Manage. Sci. , vol.6 , Issue.3 , pp. 324-342
    • Winters, P.1
  • 8
    • 0000433521 scopus 로고
    • Recursive estimation of dynamic linear models
    • Snyder R. Recursive estimation of dynamic linear models. J. R. Stat. Soc. Ser. B (Methodological) 1985, 47(2):272-276.
    • (1985) J. R. Stat. Soc. Ser. B (Methodological) , vol.47 , Issue.2 , pp. 272-276
    • Snyder, R.1
  • 9
    • 0018067185 scopus 로고
    • On a threshold model
    • Pattern Recognition and Signal Processing
    • H. Tong, On a threshold model, in: Pattern Recognition and Signal Processing, NATO ASI Ser. E: Appl. Sci. 29 (1978) 575-586.
    • (1978) NATO ASI Ser. E: Appl. Sci. , vol.29 , pp. 575-586
    • Tong, H.1
  • 11
    • 84986792427 scopus 로고
    • On estimating thresholds in autoregressive models
    • Chan K., Tong H. On estimating thresholds in autoregressive models. J. Time Ser. Anal. 1986, 7(3):179-190.
    • (1986) J. Time Ser. Anal. , vol.7 , Issue.3 , pp. 179-190
    • Chan, K.1    Tong, H.2
  • 12
    • 38249008108 scopus 로고
    • On continuous-time threshold autoregression
    • Brockwell P., Hyndman R. On continuous-time threshold autoregression. Int. J. Forecast. 1992, 8(2):157-173.
    • (1992) Int. J. Forecast. , vol.8 , Issue.2 , pp. 157-173
    • Brockwell, P.1    Hyndman, R.2
  • 13
    • 1842760558 scopus 로고    scopus 로고
    • Forecasting economic and financial time-series with non-linear models
    • Clements M., Franses P., Swanson N. Forecasting economic and financial time-series with non-linear models. Int. J. Forecast. 2004, 20(2):169-183.
    • (2004) Int. J. Forecast. , vol.20 , Issue.2 , pp. 169-183
    • Clements, M.1    Franses, P.2    Swanson, N.3
  • 14
    • 79955573824 scopus 로고    scopus 로고
    • Prediction of chaotic time series using computational intelligence
    • Samanta B. Prediction of chaotic time series using computational intelligence. Expert Syst. Appl. 2011, 38(9):11406-11411.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.9 , pp. 11406-11411
    • Samanta, B.1
  • 15
    • 79959829242 scopus 로고    scopus 로고
    • A seasonal hybrid procedure for electricity demand forecasting in China
    • Zhu S., Wang J., Zhao W., Wang J. A seasonal hybrid procedure for electricity demand forecasting in China. Appl. Energy 2011, 88(11):3807-3815.
    • (2011) Appl. Energy , vol.88 , Issue.11 , pp. 3807-3815
    • Zhu, S.1    Wang, J.2    Zhao, W.3    Wang, J.4
  • 16
    • 79953705629 scopus 로고    scopus 로고
    • A generalized method for forecasting based on fuzzy time series
    • Qiu W., Liu X., Li H. A generalized method for forecasting based on fuzzy time series. Expert Syst. Appl. 2011, 38(8):10446-10453.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.8 , pp. 10446-10453
    • Qiu, W.1    Liu, X.2    Li, H.3
  • 17
    • 79953698714 scopus 로고    scopus 로고
    • A comparison study between fuzzy time series model and ARIMA model for forecasting Taiwan export
    • Wang C. A comparison study between fuzzy time series model and ARIMA model for forecasting Taiwan export. Expert Syst. Appl. 2011, 38(8):9296-9304.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.8 , pp. 9296-9304
    • Wang, C.1
  • 18
    • 71249088973 scopus 로고    scopus 로고
    • A neural network-based fuzzy time series model to improve forecasting
    • Yu T., Huarng K. A neural network-based fuzzy time series model to improve forecasting. Expert Syst. Appl. 2010, 37(4):3366-3372.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.4 , pp. 3366-3372
    • Yu, T.1    Huarng, K.2
  • 19
    • 77957308800 scopus 로고    scopus 로고
    • Modeling and prediction of Turkey's electricity consumption using support vector regression
    • Kavaklioglu K. Modeling and prediction of Turkey's electricity consumption using support vector regression. Appl. Energy 2011, 88(1):368-375.
    • (2011) Appl. Energy , vol.88 , Issue.1 , pp. 368-375
    • Kavaklioglu, K.1
  • 20
    • 0029539588 scopus 로고
    • Building a fuzzy expert system for electric load forecasting using a hybrid neural network
    • Dash P.K., Liew A.C., Rahman S., Ramakrishna G. Building a fuzzy expert system for electric load forecasting using a hybrid neural network. Expert Syst. Appl. 1995, 9(3):407-421.
    • (1995) Expert Syst. Appl. , vol.9 , Issue.3 , pp. 407-421
    • Dash, P.K.1    Liew, A.C.2    Rahman, S.3    Ramakrishna, G.4
  • 21
    • 0026258339 scopus 로고
    • Time series forecasting using neural networks vs. Box-Jenkins methodology
    • Tang Z., de Almeida C., Fishwick P. Time series forecasting using neural networks vs. Box-Jenkins methodology. Simulation 1991, 57(5):303-310.
    • (1991) Simulation , vol.57 , Issue.5 , pp. 303-310
    • Tang, Z.1    de Almeida, C.2    Fishwick, P.3
  • 22
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks. the state of the art
    • Zhang G., Patuwo B., Hu M. Forecasting with artificial neural networks. the state of the art. Int. J. Forecast. 1998, 14(1):35-62.
    • (1998) Int. J. Forecast. , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Patuwo, B.2    Hu, M.3
  • 23
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • Jain A., Kumar A. Hybrid neural network models for hydrologic time series forecasting. Appl. Soft Comput. 2007, 7(2):585-592.
    • (2007) Appl. Soft Comput. , vol.7 , Issue.2 , pp. 585-592
    • Jain, A.1    Kumar, A.2
  • 24
    • 0008071910 scopus 로고
    • Time series predictions with neural nets. application to airborne pollen forecasting
    • Arizmendi C.M., Sanchez J., Ramos N.E., Ramos G.I. Time series predictions with neural nets. application to airborne pollen forecasting. Int. J. Biometeorol. 1993, 37(3):139-144.
    • (1993) Int. J. Biometeorol. , vol.37 , Issue.3 , pp. 139-144
    • Arizmendi, C.M.1    Sanchez, J.2    Ramos, N.E.3    Ramos, G.I.4
  • 25
    • 5144219995 scopus 로고    scopus 로고
    • Evolving RBF neural networks for time-series forecasting with EvRBF
    • Rivas V., Merelo J., Castillo P., Arenas M., Castellano J. Evolving RBF neural networks for time-series forecasting with EvRBF. Inf. Sci. 2004, 165(3-4):207-220.
    • (2004) Inf. Sci. , vol.165 , Issue.3-4 , pp. 207-220
    • Rivas, V.1    Merelo, J.2    Castillo, P.3    Arenas, M.4    Castellano, J.5
  • 26
    • 0033104431 scopus 로고    scopus 로고
    • Radial basis function neural networks for the characterization of heart rate variability dynamics
    • Bezerianos A., Papadimitriou S., Alexopoulos D. Radial basis function neural networks for the characterization of heart rate variability dynamics. Artif. Intell. Med. 1999, 15(3):215-234.
    • (1999) Artif. Intell. Med. , vol.15 , Issue.3 , pp. 215-234
    • Bezerianos, A.1    Papadimitriou, S.2    Alexopoulos, D.3
  • 27
    • 84958176926 scopus 로고    scopus 로고
    • Fast evolutionary learning of minimal radial basis function neural networks using a genetic algorithm
    • Proceedings of Evolutionary Computing, Lecture Notes in Computer Science, Springer Berlin, Heidelberg
    • B. Carse, T. Fogarty, Fast evolutionary learning of minimal radial basis function neural networks using a genetic algorithm, in: Proceedings of Evolutionary Computing, Lecture Notes in Computer Science, vol. 1143, Springer Berlin, Heidelberg, 1996, pp. 1-22.
    • (1996) , vol.1143 , pp. 1-22
    • Carse, B.1    Fogarty, T.2
  • 28
    • 0030197198 scopus 로고    scopus 로고
    • Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction
    • Whitehead B., Choate T. Cooperative-competitive genetic evolution of radial basis function centers and widths for time series prediction. IEEE Trans. Neural Networks 1996, 7(4):869-880.
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.4 , pp. 869-880
    • Whitehead, B.1    Choate, T.2
  • 29
    • 33748424239 scopus 로고    scopus 로고
    • The effect of different basis functions on a radial basis function network for time series prediction. a comparative study
    • Harpham C., Dawson C. The effect of different basis functions on a radial basis function network for time series prediction. a comparative study. Neurocomputing 2006, 69(16-18):2161-2170.
    • (2006) Neurocomputing , vol.69 , Issue.16-18 , pp. 2161-2170
    • Harpham, C.1    Dawson, C.2
  • 30
    • 40649090413 scopus 로고    scopus 로고
    • Time series prediction using evolving radial basis function networks with new encoding scheme
    • Du H., Zhang N. Time series prediction using evolving radial basis function networks with new encoding scheme. Neurocomputing 2008, 71(7-9):1388-1400.
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1388-1400
    • Du, H.1    Zhang, N.2
  • 31
    • 23344434757 scopus 로고    scopus 로고
    • Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization
    • Chatterjee A., Siarry P. Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res. 2006, 33(3):859-871.
    • (2006) Comput. Oper. Res. , vol.33 , Issue.3 , pp. 859-871
    • Chatterjee, A.1    Siarry, P.2
  • 32
    • 76849097577 scopus 로고    scopus 로고
    • An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting
    • Hippert H., Taylor J. An evaluation of Bayesian techniques for controlling model complexity and selecting inputs in a neural network for short-term load forecasting. Neural Networks 2010, 23(3):386-395.
    • (2010) Neural Networks , vol.23 , Issue.3 , pp. 386-395
    • Hippert, H.1    Taylor, J.2
  • 33
    • 70449528756 scopus 로고    scopus 로고
    • Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm
    • Lee C., Ko C. Time series prediction using RBF neural networks with a nonlinear time-varying evolution PSO algorithm. Neurocomputing 2009, 73(1-3):449-460.
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 449-460
    • Lee, C.1    Ko, C.2
  • 35
    • 0000779360 scopus 로고
    • Detecting strange attractor in turbulence
    • Dynamical Systems and Turbulence, Lecture Notes in Mathematics, Springer, New York, NY
    • F. Takens, Detecting strange attractor in turbulence, in: Dynamical Systems and Turbulence, Lecture Notes in Mathematics, vol. 898, Springer, New York, NY, 1980, pp. 366-381.
    • (1980) , vol.898 , pp. 366-381
    • Takens, F.1
  • 36
    • 69249205580 scopus 로고    scopus 로고
    • Parallel multiobjective memetic {RBFNNs} design and feature selection for function approximation problems
    • Financial Engineering, Computational and Ambient Intelligence (IWANN 2007)
    • Guillén A., Pomares H., González J., Rojas I., Valenzuela O., Prieto B. Parallel multiobjective memetic {RBFNNs} design and feature selection for function approximation problems. Neurocomputing 2009, 72(16-18):3541-3555. Financial Engineering, Computational and Ambient Intelligence (IWANN 2007) 〈http://www.sciencedirect.com/science/article/pii/S0925231209001970〉. 10.1016/j.neucom.2008.12.037.
    • (2009) Neurocomputing , vol.72 , Issue.16-18 , pp. 3541-3555
    • Guillén, A.1    Pomares, H.2    González, J.3    Rojas, I.4    Valenzuela, O.5    Prieto, B.6
  • 37
    • 79953080088 scopus 로고    scopus 로고
    • Feature selection for a cooperative coevolutionary classifier in liver fibrosis diagnosis
    • Stoean C., Stoean R., Lupsor M., Stefanescu H., Badea R. Feature selection for a cooperative coevolutionary classifier in liver fibrosis diagnosis. Comput. Biol. Med. 2011, 41(4):238-246. 〈http://www.sciencedirect.com/science/article/pii/S0010482511000308〉. 10.1016/j.compbiomed.2011.02.006.
    • (2011) Comput. Biol. Med. , vol.41 , Issue.4 , pp. 238-246
    • Stoean, C.1    Stoean, R.2    Lupsor, M.3    Stefanescu, H.4    Badea, R.5
  • 38
    • 79959506160 scopus 로고    scopus 로고
    • Dual-population based coevolutionary algorithm for designing {RBFNN} with feature selection
    • Tian J., Li M., Chen F. Dual-population based coevolutionary algorithm for designing {RBFNN} with feature selection. Expert Syst. Appl. 2010, 37(10):6904-6918. 〈http://www.sciencedirect.com/science/article/pii/S0957417410002125〉. 10.1016/j.eswa.2010.03.031.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.10 , pp. 6904-6918
    • Tian, J.1    Li, M.2    Chen, F.3
  • 39
    • 53049109819 scopus 로고    scopus 로고
    • A new intelligent system methodology for time series forecasting with artificial neural networks
    • Ferreira T., Vasconcelos G., Adeodato P. A new intelligent system methodology for time series forecasting with artificial neural networks. Neural Process. Lett. 2008, 28(2):113-129.
    • (2008) Neural Process. Lett. , vol.28 , Issue.2 , pp. 113-129
    • Ferreira, T.1    Vasconcelos, G.2    Adeodato, P.3
  • 40
    • 77952549111 scopus 로고    scopus 로고
    • Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems
    • Lukoseviciute K., Ragulskis M. Evolutionary algorithms for the selection of time lags for time series forecasting by fuzzy inference systems. Neurocomputing 2010, 73(10-12):2077-2088.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 2077-2088
    • Lukoseviciute, K.1    Ragulskis, M.2
  • 41
    • 77957677565 scopus 로고    scopus 로고
    • A quantum-inspired evolutionary hybrid intelligent approach for stock market prediction
    • Araújo R. A quantum-inspired evolutionary hybrid intelligent approach for stock market prediction. Int. J. Intell. Comput. Cybern. 2010, 3(10):24-54.
    • (2010) Int. J. Intell. Comput. Cybern. , vol.3 , Issue.10 , pp. 24-54
    • Araújo, R.1
  • 42
    • 78149499489 scopus 로고    scopus 로고
    • Hybrid intelligent methodology to design translation invariant morphological operators for Brazilian stock market prediction
    • Araújo R. Hybrid intelligent methodology to design translation invariant morphological operators for Brazilian stock market prediction. Neural Networks 2010, 23(10):1238-1251.
    • (2010) Neural Networks , vol.23 , Issue.10 , pp. 1238-1251
    • Araújo, R.1
  • 43
    • 55349119546 scopus 로고    scopus 로고
    • Feature selection form time series forecasting: a case study
    • Proceedings of 8th International Conference on Hybrid Intelligent Systems
    • R. García-Pajares, J. Benitez, G. Sainz Palmero, Feature selection form time series forecasting: a case study, in: Proceedings of 8th International Conference on Hybrid Intelligent Systems, 2008, pp. 555-560.
    • (2008) , pp. 555-560
    • García-Pajares, R.1    Benitez, J.2    Sainz Palmero, G.3
  • 44
    • 79952534864 scopus 로고    scopus 로고
    • Neural network method for determining embedding dimension of a time series
    • Maus A., Sprott J.C. Neural network method for determining embedding dimension of a time series. Commun. Nonlinear Sci. Numer. Simul. 2011, 16(8):3294-3302.
    • (2011) Commun. Nonlinear Sci. Numer. Simul. , vol.16 , Issue.8 , pp. 3294-3302
    • Maus, A.1    Sprott, J.C.2
  • 45
    • 85027492413 scopus 로고
    • A cooperative coevolutionary approach to function optimization
    • Proceedings of Parallel Problem Solving from Nature, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
    • M. Potter, K. De Jong, A cooperative coevolutionary approach to function optimization, in: Proceedings of Parallel Problem Solving from Nature, Lecture Notes in Computer Science, vol. 866, Springer, Berlin, Heidelberg, 1994, pp. 249-257.
    • (1994) , vol.866 , pp. 249-257
    • Potter, M.1    De Jong, K.2
  • 46
    • 0034153728 scopus 로고    scopus 로고
    • Cooperative coevolution. an architecture for evolving coadapted subcomponents
    • Potter M., De Jong K. Cooperative coevolution. an architecture for evolving coadapted subcomponents. Evol. Comput. 2000, 8(1):1-29.
    • (2000) Evol. Comput. , vol.8 , Issue.1 , pp. 1-29
    • Potter, M.1    De Jong, K.2
  • 47
    • 0013401736 scopus 로고    scopus 로고
    • An empirical analysis of collaboration methods in cooperative coevolutionary algorithms
    • Proceedings of the Genetic and Evolutionary Computation Conference
    • R. Wiegand, W. Liles, K. De Jong, An empirical analysis of collaboration methods in cooperative coevolutionary algorithms, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2001, pp. 1235-1242.
    • (2001) , pp. 1235-1242
    • Wiegand, R.1    Liles, W.2    De Jong, K.3
  • 48
    • 84880814738 scopus 로고    scopus 로고
    • Improving coevolutionary search for optimal multiagent behaviors
    • Proceedings of the International Joint Conference on Artificial Intelligence, Morgan Kaufmann
    • L. Panait, R. Wiegand, S. Luke, Improving coevolutionary search for optimal multiagent behaviors, in: Proceedings of the International Joint Conference on Artificial Intelligence, Morgan Kaufmann, 2003, pp. 653-658.
    • (2003) , pp. 653-658
    • Panait, L.1    Wiegand, R.2    Luke, S.3
  • 49
    • 79955256827 scopus 로고    scopus 로고
    • Biasing mutations in cooperative coevolution
    • Proceedings of IEEE Congress on Evolutionary Computation
    • C. Au, H. Leung, Biasing mutations in cooperative coevolution, in: Proceedings of IEEE Congress on Evolutionary Computation, 2007, pp. 828-835.
    • (2007) , pp. 828-835
    • Au, C.1    Leung, H.2
  • 50
    • 33749867996 scopus 로고    scopus 로고
    • A distributed cooperative co-evolutionary algorithm for multi-objective optimization
    • Tan K., Yang Y., Goh C. A distributed cooperative co-evolutionary algorithm for multi-objective optimization. IEEE Trans. Evol. Comput. 2006, 10(5):527-549.
    • (2006) IEEE Trans. Evol. Comput. , vol.10 , Issue.5 , pp. 527-549
    • Tan, K.1    Yang, Y.2    Goh, C.3
  • 51
    • 76549132784 scopus 로고    scopus 로고
    • A cooperative coevolutionary algorithm for instance selection for instance-based learning
    • García-Pedrajas N., del Castillo J.R., Ortiz-Boyer D. A cooperative coevolutionary algorithm for instance selection for instance-based learning. Mach. Learn. 2010, 78(3):381-420.
    • (2010) Mach. Learn. , vol.78 , Issue.3 , pp. 381-420
    • García-Pedrajas, N.1    del Castillo, J.R.2    Ortiz-Boyer, D.3
  • 52
    • 76749096459 scopus 로고    scopus 로고
    • Ifs-coco. instance and feature selection based on cooperative coevolution with nearest neighbor rule
    • Derrac J., García S., Herrera F. Ifs-coco. instance and feature selection based on cooperative coevolution with nearest neighbor rule. Pattern Recognition 2010, 43(6):2082-2105.
    • (2010) Pattern Recognition , vol.43 , Issue.6 , pp. 2082-2105
    • Derrac, J.1    García, S.2    Herrera, F.3
  • 53
    • 21044454599 scopus 로고    scopus 로고
    • Cooperative coevolution of artificial neural network ensembles for pattern classification
    • García-Pedrajas N., Hervas-Martínez C., Ortiz-Boyer D. Cooperative coevolution of artificial neural network ensembles for pattern classification. IEEE Trans. Evol. Comput. 2005, 9(3):271-302.
    • (2005) IEEE Trans. Evol. Comput. , vol.9 , Issue.3 , pp. 271-302
    • García-Pedrajas, N.1    Hervas-Martínez, C.2    Ortiz-Boyer, D.3
  • 54
    • 38349047621 scopus 로고    scopus 로고
    • Improving multiclass pattern recognition with a co-evolutionary RBFNN
    • Li M., Tian J., Chen F. Improving multiclass pattern recognition with a co-evolutionary RBFNN. Pattern Recognition Lett. 2008, 29(4):392-406.
    • (2008) Pattern Recognition Lett. , vol.29 , Issue.4 , pp. 392-406
    • Li, M.1    Tian, J.2    Chen, F.3
  • 55
    • 77956023941 scopus 로고    scopus 로고
    • Power system short-term load forecasting based on cooperative co-evolutionary immune network model
    • Proceedings of 2nd International Conference on Education Technology and Computer
    • X. Ma, H. Wu, Power system short-term load forecasting based on cooperative co-evolutionary immune network model, in: Proceedings of 2nd International Conference on Education Technology and Computer, 2010, pp. 582-585.
    • (2010) , pp. 582-585
    • Ma, X.1    Wu, H.2
  • 56
    • 43649096310 scopus 로고    scopus 로고
    • Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network
    • M. Qian-Li, Z. Qi-Lun, P. Hong, Z. Tan-Wei, Q. Jiang-Wei, Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network, Chinese Physics B 17 (2) (2008).
    • (2008) Chinese Physics B , vol.17 , Issue.2
    • Qian-Li, M.1    Qi-Lun, Z.2    Hong, P.3    Tan-Wei, Z.4    Jiang-Wei, Q.5
  • 59
    • 0002006114 scopus 로고
    • Error measures for generalizing about forecasting methods. empirical comparisons
    • Armstrong J., Collopy F. Error measures for generalizing about forecasting methods. empirical comparisons. Int. J. Forecast. 1992, 8(1):69-80.
    • (1992) Int. J. Forecast. , vol.8 , Issue.1 , pp. 69-80
    • Armstrong, J.1    Collopy, F.2
  • 60
    • 0002847043 scopus 로고
    • The evaluation of extrapolative forecasting methods
    • Fildes R. The evaluation of extrapolative forecasting methods. Int. J. Forecast. 1992, 8(1):81-98.
    • (1992) Int. J. Forecast. , vol.8 , Issue.1 , pp. 81-98
    • Fildes, R.1
  • 61
    • 0034288942 scopus 로고    scopus 로고
    • The m3-competition. results, conclusions and implications
    • Makridakis S., Hibon M. The m3-competition. results, conclusions and implications. Int. J. Forecast. 2000, 16(4):451-476.
    • (2000) Int. J. Forecast. , vol.16 , Issue.4 , pp. 451-476
    • Makridakis, S.1    Hibon, M.2
  • 62
    • 33749517168 scopus 로고    scopus 로고
    • Another look at measures of forecast accuracy
    • Hyndman R., Koehler A. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22(4):679-688.
    • (2006) Int. J. Forecast. , vol.22 , Issue.4 , pp. 679-688
    • Hyndman, R.1    Koehler, A.2
  • 63
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Zhang G., Qi M. Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 2005, 160(2):501-514.
    • (2005) Eur. J. Oper. Res. , vol.160 , Issue.2 , pp. 501-514
    • Zhang, G.1    Qi, M.2
  • 64
    • 0001334115 scopus 로고
    • The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination
    • Proceedings of 1st Workshop on Foundations of Genetic Algorithms
    • L. Eshelman, The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination, in: Proceedings of 1st Workshop on Foundations of Genetic Algorithms, 1991, pp. 265-283.
    • (1991) , pp. 265-283
    • Eshelman, L.1
  • 65
    • 0026943536 scopus 로고    scopus 로고
    • Generating fuzzy rules by learning from examples
    • Wang L., Mendel J. Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 2002, 22(6):1414-1427.
    • (2002) IEEE Trans. Syst. Man Cybern. , vol.22 , Issue.6 , pp. 1414-1427
    • Wang, L.1    Mendel, J.2
  • 71
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning. accuracy and interpretability
    • García S., Fernández A., Luengo J., Herrera F. A study of statistical techniques and performance measures for genetics-based machine learning. accuracy and interpretability. Soft Comput. 2009, 13(10):959-977.
    • (2009) Soft Comput. , vol.13 , Issue.10 , pp. 959-977
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 72
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6(2):65-70.
    • (1979) Scand. J. Stat. , vol.6 , Issue.2 , pp. 65-70
    • Holm, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.