-
1
-
-
34249753618
-
Support-vector networks
-
Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20(3):273-297.
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
5
-
-
34250655441
-
CVX: Matlab Software For Disciplined Convex Programming
-
version 1.21
-
M. Grant, S. Boyd, CVX: Matlab Software For Disciplined Convex Programming, version 1.21, 2011. URL http://cvxr.com/cvx.
-
(2011)
-
-
Grant, M.1
Boyd, S.2
-
7
-
-
34147123962
-
A probabilistic interpretation of SVMS with an application to unbalanced classification
-
Advances in Neural Information Processing Systems
-
Y. Grandvalet, J. Mariéthoz, S. Bengio, A probabilistic interpretation of SVMS with an application to unbalanced classification, in: Advances in Neural Information Processing Systems, vol. 18, 2006, pp. 467-474.
-
(2006)
, vol.18
, pp. 467-474
-
-
Grandvalet, Y.1
Mariéthoz, J.2
Bengio, S.3
-
8
-
-
84899032333
-
Probabilistic methods for support vector machines
-
Sollich P. Probabilistic methods for support vector machines. Adv. Neural Inf. Process. Syst. 2000, 12:349-355.
-
(2000)
Adv. Neural Inf. Process. Syst.
, vol.12
, pp. 349-355
-
-
Sollich, P.1
-
9
-
-
33745903481
-
Extreme learning machine. theory and applications
-
Huang G., Zhu Q., Siew C. Extreme learning machine. theory and applications. Neurocomputing 2006, 70(1):489-501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1
, pp. 489-501
-
-
Huang, G.1
Zhu, Q.2
Siew, C.3
-
10
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Proceedings of the Fifth Annual Workshop on Computational Learning Theory
-
B. Boser, I. Guyon, V. Vapnik, A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 1992, pp. 144-152.
-
(1992)
, pp. 144-152
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.3
-
11
-
-
0001873883
-
Support vector machines, reproducing Kernel Hilbert spaces and the randomized GACV
-
Wahba G., et al. Support vector machines, reproducing Kernel Hilbert spaces and the randomized GACV. Adv. Kernel Methods Support Vector Learn. 1999, 6:69-87.
-
(1999)
Adv. Kernel Methods Support Vector Learn.
, vol.6
, pp. 69-87
-
-
Wahba, G.1
-
14
-
-
15944424353
-
Kernel logistic regression and the import vector machine
-
Zhu J., Hastie T. Kernel logistic regression and the import vector machine. J. Comput. Graph. Stat. 2005, 14(1):185-205.
-
(2005)
J. Comput. Graph. Stat.
, vol.14
, Issue.1
, pp. 185-205
-
-
Zhu, J.1
Hastie, T.2
-
15
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
-
(1999)
Neural Process. Lett.
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.1
Vandewalle, J.2
-
16
-
-
0033334209
-
Multiclass least squares support vector machines
-
International Joint Conference on Neural Networks, IJCNN'99
-
J. Suykens, J. Vandewalle, Multiclass least squares support vector machines, in: International Joint Conference on Neural Networks, IJCNN'99, vol. 2, IEEE, 1999, pp. 900-903.
-
(1999)
IEEE
, vol.2
, pp. 900-903
-
-
Suykens, J.1
Vandewalle, J.2
-
18
-
-
0032098361
-
The connection between regularization operators and support vector kernels
-
Smola A., Schölkopf B., Müller K. The connection between regularization operators and support vector kernels. Neural Netw. 1998, 11(4):637-649.
-
(1998)
Neural Netw.
, vol.11
, Issue.4
, pp. 637-649
-
-
Smola, A.1
Schölkopf, B.2
Müller, K.3
-
21
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Dis. 1998, 2(2):121-167.
-
(1998)
Data Min. Knowl. Dis.
, vol.2
, Issue.2
, pp. 121-167
-
-
Burges, C.1
-
23
-
-
0001874815
-
Least squares support vector machine classifiers: a large scale algorithm
-
European Conference on Circuit Theory and Design
-
J. Suykens, L. Lukas, P. V. Dooren, B. D. Moor, J. Vandewalle, Least squares support vector machine classifiers: a large scale algorithm, in: European Conference on Circuit Theory and Design, 1999, pp. 839-842.
-
(1999)
, pp. 839-842
-
-
Suykens, J.1
Lukas, L.2
Dooren, P.V.3
Moor, B.D.4
Vandewalle, J.5
-
24
-
-
0242288903
-
Benchmarking least squares support vector machine classifiers
-
Van Gestel T., Suykens J., Baesens B., Viaene S., Vanthienen J., Dedene G., De Moor B., Vandewalle J. Benchmarking least squares support vector machine classifiers. Mach. Learn. 2004, 54(1):5-32.
-
(2004)
Mach. Learn.
, vol.54
, Issue.1
, pp. 5-32
-
-
Van Gestel, T.1
Suykens, J.2
Baesens, B.3
Viaene, S.4
Vanthienen, J.5
Dedene, G.6
De Moor, B.7
Vandewalle, J.8
-
25
-
-
0036825528
-
Weighted least squares support vector machines. robustness and sparse approximation
-
Suykens J., De Brabanter J., Lukas L., Vandewalle J. Weighted least squares support vector machines. robustness and sparse approximation. Neurocomputing 2002, 48(1-4):85-105.
-
(2002)
Neurocomputing
, vol.48
, Issue.1-4
, pp. 85-105
-
-
Suykens, J.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
26
-
-
0036825788
-
Improved sparse least-squares support vector machines
-
Cawley G., Talbot N. Improved sparse least-squares support vector machines. Neurocomputing 2002, 48(1-4):1025-1031.
-
(2002)
Neurocomputing
, vol.48
, Issue.1-4
, pp. 1025-1031
-
-
Cawley, G.1
Talbot, N.2
-
27
-
-
50249104706
-
Sparse and robust least squares support vector machine: a linear programming formulation
-
IEEE International Conference on Grey Systems and Intelligent Services, GSIS 2007, IEEE
-
L. Wei, Z. Chen, J. Li, W. Xu, Sparse and robust least squares support vector machine: a linear programming formulation, in: IEEE International Conference on Grey Systems and Intelligent Services, GSIS 2007, IEEE, 2007, pp. 1134-1138.
-
(2007)
, pp. 1134-1138
-
-
Wei, L.1
Chen, Z.2
Li, J.3
Xu, W.4
-
28
-
-
78049527784
-
A weighted Lq adaptive least squares support vector machine classifiers-robust and sparse approximation
-
Liu J., Li J., Xu W., Shi Y. A weighted Lq adaptive least squares support vector machine classifiers-robust and sparse approximation. Expert Syst. Appl. 2011, 38(3):2253-2259.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.3
, pp. 2253-2259
-
-
Liu, J.1
Li, J.2
Xu, W.3
Shi, Y.4
-
29
-
-
79955482677
-
Evolution strategies based adaptive Lp LS-SVM
-
Wei L., Chen Z., Li J. Evolution strategies based adaptive Lp LS-SVM. Inf. Sci. 2011, 181:3000-3016.
-
(2011)
Inf. Sci.
, vol.181
, pp. 3000-3016
-
-
Wei, L.1
Chen, Z.2
Li, J.3
-
30
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with random hidden nodes
-
Huang G., Chen L., Siew C. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17(4):879-892.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.4
, pp. 879-892
-
-
Huang, G.1
Chen, L.2
Siew, C.3
-
32
-
-
0031673055
-
Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
-
Huang G., Babri H. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Netw. 1998, 9(1):224-229.
-
(1998)
IEEE Trans. Neural Netw.
, vol.9
, Issue.1
, pp. 224-229
-
-
Huang, G.1
Babri, H.2
-
33
-
-
0026190194
-
A simple method to derive bounds on the size and to train multilayer neural networks
-
Sartori M., Antsaklis P. A simple method to derive bounds on the size and to train multilayer neural networks. IEEE Trans. Neural Netw. 1991, 2(4):467-471.
-
(1991)
IEEE Trans. Neural Netw.
, vol.2
, Issue.4
, pp. 467-471
-
-
Sartori, M.1
Antsaklis, P.2
-
34
-
-
0025792215
-
Bounds on the number of hidden neurons in multilayer perceptrons
-
Huang S., Huang Y. Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Trans. Neural Netw. 1991, 2(1):47-55.
-
(1991)
IEEE Trans. Neural Netw.
, vol.2
, Issue.1
, pp. 47-55
-
-
Huang, S.1
Huang, Y.2
-
35
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
-
Leshno M., Lin V., Pinkus A., Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 1993, 6(6):861-867.
-
(1993)
Neural Netw.
, vol.6
, Issue.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.2
Pinkus, A.3
Schocken, S.4
-
36
-
-
0042892216
-
Univariant approximation by superpositions of a sigmoidal function
-
Gao B., Xu Y. Univariant approximation by superpositions of a sigmoidal function. J. Math. Anal. Appl. 1993, 178(1):221-226.
-
(1993)
J. Math. Anal. Appl.
, vol.178
, Issue.1
, pp. 221-226
-
-
Gao, B.1
Xu, Y.2
-
37
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4(2):251-257.
-
(1991)
Neural Netw.
, vol.4
, Issue.2
, pp. 251-257
-
-
Hornik, K.1
-
38
-
-
0024880831
-
Multilayer feedforward networks are universal approximators
-
Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2(5):359-366.
-
(1989)
Neural Netw.
, vol.2
, Issue.5
, pp. 359-366
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
-
39
-
-
0024866495
-
On the approximate realization of continuous mappings by neural networks
-
Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Netw. 1989, 2(3):183-192.
-
(1989)
Neural Netw.
, vol.2
, Issue.3
, pp. 183-192
-
-
Funahashi, K.1
-
40
-
-
34548158996
-
Convex incremental extreme learning machine
-
Huang G., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70(16-18):3056-3062.
-
(2007)
Neurocomputing
, vol.70
, Issue.16-18
, pp. 3056-3062
-
-
Huang, G.1
Chen, L.2
-
41
-
-
56549090053
-
Enhanced random search based incremental extreme learning machine
-
Huang G., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71(16):3460-3468.
-
(2008)
Neurocomputing
, vol.71
, Issue.16
, pp. 3460-3468
-
-
Huang, G.1
Chen, L.2
-
42
-
-
22844451535
-
Fully complex extreme learning machine
-
Li M., Huang G., Saratchandran P., Sundararajan N. Fully complex extreme learning machine. Neurocomputing 2005, 68:306-314.
-
(2005)
Neurocomputing
, vol.68
, pp. 306-314
-
-
Li, M.1
Huang, G.2
Saratchandran, P.3
Sundararajan, N.4
-
43
-
-
38649131505
-
Incremental extreme learning machine with fully complex hidden nodes
-
Huang G., Li M., Chen L., Siew C. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 2008, 71(4):576-583.
-
(2008)
Neurocomputing
, vol.71
, Issue.4
, pp. 576-583
-
-
Huang, G.1
Li, M.2
Chen, L.3
Siew, C.4
-
44
-
-
85008039450
-
Online sequential fuzzy extreme learning machine for function approximation and classification problems
-
Rong H., Huang G., Sundararajan N., Saratchandran P. Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans. Syst. Man. Cybern. Part B. Cybern. 2009, 39(4):1067-1072.
-
(2009)
IEEE Trans. Syst. Man. Cybern. Part B. Cybern.
, vol.39
, Issue.4
, pp. 1067-1072
-
-
Rong, H.1
Huang, G.2
Sundararajan, N.3
Saratchandran, P.4
-
45
-
-
34047174077
-
A fast and accurate online sequential learning algorithm for feedforward networks
-
Liang N., Huang G., Saratchandran P., Sundararajan N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 2006, 17(6):1411-1423.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.6
, pp. 1411-1423
-
-
Liang, N.1
Huang, G.2
Saratchandran, P.3
Sundararajan, N.4
-
46
-
-
77954299719
-
Ensemble of online sequential extreme learning machine
-
Lan Y., Soh Y., Huang G. Ensemble of online sequential extreme learning machine. Neurocomputing 2009, 72(13-15):3391-3395.
-
(2009)
Neurocomputing
, vol.72
, Issue.13-15
, pp. 3391-3395
-
-
Lan, Y.1
Soh, Y.2
Huang, G.3
-
47
-
-
56049098499
-
Sales forecasting using extreme learning machine with applications in fashion retailing
-
Sun Z., Choi T., Au K., Yu Y. Sales forecasting using extreme learning machine with applications in fashion retailing. Decis. Support Syst. 2008, 46(1):411-419.
-
(2008)
Decis. Support Syst.
, vol.46
, Issue.1
, pp. 411-419
-
-
Sun, Z.1
Choi, T.2
Au, K.3
Yu, Y.4
-
48
-
-
70450194207
-
Adaptive ensemble models of extreme learning machines for time series prediction
-
Van Heeswijk M., Miche Y., Lindh-Knuutila T., Hilbers P., Honkela T., Oja E., Lendasse A. Adaptive ensemble models of extreme learning machines for time series prediction. Lect. Notes Comput. Sci. 2009, 5769:305-314.
-
(2009)
Lect. Notes Comput. Sci.
, vol.5769
, pp. 305-314
-
-
Van Heeswijk, M.1
Miche, Y.2
Lindh-Knuutila, T.3
Hilbers, P.4
Honkela, T.5
Oja, E.6
Lendasse, A.7
-
50
-
-
84859007933
-
Extreme learning machine for regression and multiclass classification
-
Huang G.-B., Zhou H., Ding X., Zhang R. Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B. Cybern. 2012, 42(2):513-529.
-
(2012)
IEEE Trans. Syst. Man Cybern. Part B. Cybern.
, vol.42
, Issue.2
, pp. 513-529
-
-
Huang, G.-B.1
Zhou, H.2
Ding, X.3
Zhang, R.4
-
51
-
-
67650463106
-
Regularized extreme learning machine
-
IEEE Symposium on Computational Intelligence and Data Mining, CIDM'09, IEEE
-
W. Deng, Q. Zheng, L. Chen, Regularized extreme learning machine, in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM'09, IEEE, 2009, pp. 389-395.
-
(2009)
, pp. 389-395
-
-
Deng, W.1
Zheng, Q.2
Chen, L.3
-
52
-
-
77955204500
-
Color image watermarking using regularized extreme learning machine
-
SP. ISS. {SI} 3
-
Deng W., Chen L. Color image watermarking using regularized extreme learning machine. Neural Netw. World 2010, 20(Sp. Iss. {SI} 3):317-330.
-
(2010)
Neural Netw. World
, vol.20
, pp. 317-330
-
-
Deng, W.1
Chen, L.2
-
53
-
-
44649099490
-
Extreme support vector machine classifier
-
Proceedings of the 12th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Springer-Verlag
-
Q. Liu, Q. He, Z. Shi, Extreme support vector machine classifier, in: Proceedings of the 12th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Springer-Verlag, 2008, pp. 222-233.
-
(2008)
, pp. 222-233
-
-
Liu, Q.1
He, Q.2
Shi, Z.3
-
54
-
-
84887012141
-
Using svms with randomised feature spaces: an extreme learning approach
-
Proceedings of the 18th European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium
-
B. Frénay, M. Verleysen, Using svms with randomised feature spaces: an extreme learning approach, in: Proceedings of the 18th European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, vol. 28, 2010, p. 30.
-
(2010)
, vol.28
, pp. 30
-
-
Frénay, B.1
Verleysen, M.2
-
55
-
-
78649492473
-
Optimization method based extreme learning machine for classification
-
Huang G., Ding X., Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74(1):155-163.
-
(2010)
Neurocomputing
, vol.74
, Issue.1
, pp. 155-163
-
-
Huang, G.1
Ding, X.2
Zhou, H.3
-
56
-
-
0000704059
-
Computation with infinite neural networks
-
Williams C. Computation with infinite neural networks. Neural Comput. 1998, 10(5):1203-1216.
-
(1998)
Neural Comput.
, vol.10
, Issue.5
, pp. 1203-1216
-
-
Williams, C.1
-
57
-
-
78651426442
-
Interpreting extreme learning machine as an approximation to an infinite neural network
-
KDIR 2010: Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, Valencia, Spain
-
E. Parviainen, J. Riihimäki, Y. Miche, A. Lendasse, Interpreting extreme learning machine as an approximation to an infinite neural network, in: KDIR 2010: Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, Valencia, Spain, 2010.
-
(2010)
-
-
Parviainen, E.1
Riihimäki, J.2
Miche, Y.3
Lendasse, A.4
-
58
-
-
80051670315
-
Parameter-insensitive kernel in extreme learning for non-linear support vector regression
-
Frénay B., Verleysen M. Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing 2011, 74:2526-2531.
-
(2011)
Neurocomputing
, vol.74
, pp. 2526-2531
-
-
Frénay, B.1
Verleysen, M.2
-
59
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Meth.) 1996, 58:267-288.
-
(1996)
J. R. Stat. Soc. Ser. B (Meth.)
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
60
-
-
84865706274
-
Regularized extreme learning machine for regression problems
-
Martínez-Martínez J., Escandell-Montero P., Soria-Olivas E., Martín-Guerrero J., Magdalena-Benedito R., Gómez-Sanchis J. Regularized extreme learning machine for regression problems. Neurocomputing 2011, 74(17):3716-3721.
-
(2011)
Neurocomputing
, vol.74
, Issue.17
, pp. 3716-3721
-
-
Martínez-Martínez, J.1
Escandell-Montero, P.2
Soria-Olivas, E.3
Martín-Guerrero, J.4
Magdalena-Benedito, R.5
Gómez-Sanchis, J.6
-
61
-
-
58849132454
-
Op-elm: Theory, experiments and a toolbox
-
Proceedings of the 18th International Conference on Artificial Neural Networks, Part I, ICANN '08, Springer-Verlag, Berlin, Heidelberg
-
Y. Miche, A. Sorjamaa, A. Lendasse, Op-elm: Theory, experiments and a toolbox, in: Proceedings of the 18th International Conference on Artificial Neural Networks, Part I, ICANN '08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 145-154.
-
(2008)
, pp. 145-154
-
-
Miche, Y.1
Sorjamaa, A.2
Lendasse, A.3
-
62
-
-
84899024917
-
1-norm support vector machines
-
Zhu J., Rosset S., Hastie T., Tibshirani R. 1-norm support vector machines. Adv. Neural Inf. Process. Syst. 2004, 16(1):49-56.
-
(2004)
Adv. Neural Inf. Process. Syst.
, vol.16
, Issue.1
, pp. 49-56
-
-
Zhu, J.1
Rosset, S.2
Hastie, T.3
Tibshirani, R.4
-
63
-
-
33745801137
-
Exact 1-norm support vector machines via unconstrained convex differentiable minimization
-
Mangasarian O. Exact 1-norm support vector machines via unconstrained convex differentiable minimization. J. Mach. Learn. Res. 2006, 7:1517-1530.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1517-1530
-
-
Mangasarian, O.1
-
64
-
-
34250708395
-
1-norm multiclass support vector machines
-
1-norm multiclass support vector machines. J. Am. Stat. Assoc. 2007, 102(478):583-594.
-
(2007)
J. Am. Stat. Assoc.
, vol.102
, Issue.478
, pp. 583-594
-
-
Wang, L.1
Shen, X.2
-
66
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
Hsu C., Lin C. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13(2):415-425.
-
(2002)
IEEE Trans. Neural Netw.
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.1
Lin, C.2
-
67
-
-
33745814063
-
Which is the best multiclass SVM methodα An empirical study
-
Duan K., Keerthi S. Which is the best multiclass SVM methodα An empirical study. Mult. Classif. Syst. 2005, 732-760.
-
(2005)
Mult. Classif. Syst.
, pp. 732-760
-
-
Duan, K.1
Keerthi, S.2
-
68
-
-
84893642917
-
-
Official ELM Toolbox (accessed 6/9/2012).
-
Official ELM Toolbox (accessed 6/9/2012). http://www.ntu.edu.sg/home/egbhuang/ELM_Codes.htm.
-
-
-
-
69
-
-
0037313407
-
SMO algorithm for least-squares SVM formulations
-
Keerthi S., Shevade S. SMO algorithm for least-squares SVM formulations. Neural Comput. 2003, 15:487-507.
-
(2003)
Neural Comput.
, vol.15
, pp. 487-507
-
-
Keerthi, S.1
Shevade, S.2
-
70
-
-
0003120218
-
Fast training of support vector machines using sequential minimal optimization
-
MIT Press, Cambridge, MA, USA, B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.)
-
Platt J.C. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods 1999, 185-208. MIT Press, Cambridge, MA, USA. B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.).
-
(1999)
Advances in Kernel Methods
, pp. 185-208
-
-
Platt, J.C.1
-
71
-
-
84893643132
-
-
UCI Machine Learning Repository, URL
-
D.N.A. Asuncion, UCI Machine Learning Repository, 2007. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
(2007)
-
-
Asuncion, D.N.A.1
-
72
-
-
84893696939
-
-
Ls-svmlab toolbox. URL (accessed 6/9/2012).
-
K.D. Brabanter, P. Karsmakers, C.A.F. Ojeda, J.D. Brabanter, K. Pelckmans, B.D. Moor, J. Vandewalle, J. Suykens, Ls-svmlab toolbox. URL (accessed 6/9/2012). http://www.esat.kuleuven.be/sista/lssvmlab/.
-
-
-
Brabanter, K.D.1
Karsmakers, P.2
Ojeda, C.A.F.3
Brabanter, J.D.4
Pelckmans, K.5
Moor, B.D.6
Vandewalle, J.7
Suykens, J.8
-
73
-
-
36849072045
-
Graph implementations for nonsmooth convex programs
-
V. Blondel, S. Boyd, H. Kimura (Eds.), Recent Advances in Learning and Control (tribute to M. Vidyasagar), Lecture Notes in Control and Information Sciences, Springer
-
M. Grant, S. Boyd, Graph implementations for nonsmooth convex programs, in: V. Blondel, S. Boyd, H. Kimura (Eds.), Recent Advances in Learning and Control (tribute to M. Vidyasagar), Lecture Notes in Control and Information Sciences, Springer, 2008, pp. 95-110.
-
(2008)
, pp. 95-110
-
-
Grant, M.1
Boyd, S.2
-
74
-
-
28444483767
-
SVM and kernel Methods Matlab Toolbox, Perception Systemes et Information, INSA de Rouen, Rouen, France
-
S. Canu, Y. Grandvalet, V. Guigue, A. Rakotomamonjy, SVM and kernel Methods Matlab Toolbox, Perception Systemes et Information, INSA de Rouen, Rouen, France, vol. 2, 2005.
-
(2005)
, vol.2
-
-
Canu, S.1
Grandvalet, Y.2
Guigue, V.3
Rakotomamonjy, A.4
|