메뉴 건너뛰기




Volumn 128, Issue , 2014, Pages 507-516

Review and performance comparison of SVM- and ELM-based classifiers

Author keywords

Classification; Convex quadratic programming; ELM; Machine learning; Randomization; SVM

Indexed keywords

CLASSIFICATION ACCURACY; CONVEX OPTIMIZATION PROBLEMS; CONVEX QUADRATIC PROGRAMMING; ELM; EXTREME LEARNING MACHINE; NESTED CROSS VALIDATIONS; RANDOMIZATION; SVM;

EID: 84893662789     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2013.08.009     Document Type: Article
Times cited : (195)

References (74)
  • 1
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C., Vapnik V. Support-vector networks. Mach. Learn. 1995, 20(3):273-297.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 5
    • 34250655441 scopus 로고    scopus 로고
    • CVX: Matlab Software For Disciplined Convex Programming
    • version 1.21
    • M. Grant, S. Boyd, CVX: Matlab Software For Disciplined Convex Programming, version 1.21, 2011. URL http://cvxr.com/cvx.
    • (2011)
    • Grant, M.1    Boyd, S.2
  • 7
    • 34147123962 scopus 로고    scopus 로고
    • A probabilistic interpretation of SVMS with an application to unbalanced classification
    • Advances in Neural Information Processing Systems
    • Y. Grandvalet, J. Mariéthoz, S. Bengio, A probabilistic interpretation of SVMS with an application to unbalanced classification, in: Advances in Neural Information Processing Systems, vol. 18, 2006, pp. 467-474.
    • (2006) , vol.18 , pp. 467-474
    • Grandvalet, Y.1    Mariéthoz, J.2    Bengio, S.3
  • 8
    • 84899032333 scopus 로고    scopus 로고
    • Probabilistic methods for support vector machines
    • Sollich P. Probabilistic methods for support vector machines. Adv. Neural Inf. Process. Syst. 2000, 12:349-355.
    • (2000) Adv. Neural Inf. Process. Syst. , vol.12 , pp. 349-355
    • Sollich, P.1
  • 9
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine. theory and applications
    • Huang G., Zhu Q., Siew C. Extreme learning machine. theory and applications. Neurocomputing 2006, 70(1):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 489-501
    • Huang, G.1    Zhu, Q.2    Siew, C.3
  • 10
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • Proceedings of the Fifth Annual Workshop on Computational Learning Theory
    • B. Boser, I. Guyon, V. Vapnik, A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, 1992, pp. 144-152.
    • (1992) , pp. 144-152
    • Boser, B.1    Guyon, I.2    Vapnik, V.3
  • 11
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing Kernel Hilbert spaces and the randomized GACV
    • Wahba G., et al. Support vector machines, reproducing Kernel Hilbert spaces and the randomized GACV. Adv. Kernel Methods Support Vector Learn. 1999, 6:69-87.
    • (1999) Adv. Kernel Methods Support Vector Learn. , vol.6 , pp. 69-87
    • Wahba, G.1
  • 14
    • 15944424353 scopus 로고    scopus 로고
    • Kernel logistic regression and the import vector machine
    • Zhu J., Hastie T. Kernel logistic regression and the import vector machine. J. Comput. Graph. Stat. 2005, 14(1):185-205.
    • (2005) J. Comput. Graph. Stat. , vol.14 , Issue.1 , pp. 185-205
    • Zhu, J.1    Hastie, T.2
  • 15
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J., Vandewalle J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9(3):293-300.
    • (1999) Neural Process. Lett. , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.1    Vandewalle, J.2
  • 16
    • 0033334209 scopus 로고    scopus 로고
    • Multiclass least squares support vector machines
    • International Joint Conference on Neural Networks, IJCNN'99
    • J. Suykens, J. Vandewalle, Multiclass least squares support vector machines, in: International Joint Conference on Neural Networks, IJCNN'99, vol. 2, IEEE, 1999, pp. 900-903.
    • (1999) IEEE , vol.2 , pp. 900-903
    • Suykens, J.1    Vandewalle, J.2
  • 18
    • 0032098361 scopus 로고    scopus 로고
    • The connection between regularization operators and support vector kernels
    • Smola A., Schölkopf B., Müller K. The connection between regularization operators and support vector kernels. Neural Netw. 1998, 11(4):637-649.
    • (1998) Neural Netw. , vol.11 , Issue.4 , pp. 637-649
    • Smola, A.1    Schölkopf, B.2    Müller, K.3
  • 21
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Dis. 1998, 2(2):121-167.
    • (1998) Data Min. Knowl. Dis. , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.1
  • 23
    • 0001874815 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers: a large scale algorithm
    • European Conference on Circuit Theory and Design
    • J. Suykens, L. Lukas, P. V. Dooren, B. D. Moor, J. Vandewalle, Least squares support vector machine classifiers: a large scale algorithm, in: European Conference on Circuit Theory and Design, 1999, pp. 839-842.
    • (1999) , pp. 839-842
    • Suykens, J.1    Lukas, L.2    Dooren, P.V.3    Moor, B.D.4    Vandewalle, J.5
  • 25
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines. robustness and sparse approximation
    • Suykens J., De Brabanter J., Lukas L., Vandewalle J. Weighted least squares support vector machines. robustness and sparse approximation. Neurocomputing 2002, 48(1-4):85-105.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 85-105
    • Suykens, J.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 26
    • 0036825788 scopus 로고    scopus 로고
    • Improved sparse least-squares support vector machines
    • Cawley G., Talbot N. Improved sparse least-squares support vector machines. Neurocomputing 2002, 48(1-4):1025-1031.
    • (2002) Neurocomputing , vol.48 , Issue.1-4 , pp. 1025-1031
    • Cawley, G.1    Talbot, N.2
  • 27
    • 50249104706 scopus 로고    scopus 로고
    • Sparse and robust least squares support vector machine: a linear programming formulation
    • IEEE International Conference on Grey Systems and Intelligent Services, GSIS 2007, IEEE
    • L. Wei, Z. Chen, J. Li, W. Xu, Sparse and robust least squares support vector machine: a linear programming formulation, in: IEEE International Conference on Grey Systems and Intelligent Services, GSIS 2007, IEEE, 2007, pp. 1134-1138.
    • (2007) , pp. 1134-1138
    • Wei, L.1    Chen, Z.2    Li, J.3    Xu, W.4
  • 28
    • 78049527784 scopus 로고    scopus 로고
    • A weighted Lq adaptive least squares support vector machine classifiers-robust and sparse approximation
    • Liu J., Li J., Xu W., Shi Y. A weighted Lq adaptive least squares support vector machine classifiers-robust and sparse approximation. Expert Syst. Appl. 2011, 38(3):2253-2259.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.3 , pp. 2253-2259
    • Liu, J.1    Li, J.2    Xu, W.3    Shi, Y.4
  • 29
    • 79955482677 scopus 로고    scopus 로고
    • Evolution strategies based adaptive Lp LS-SVM
    • Wei L., Chen Z., Li J. Evolution strategies based adaptive Lp LS-SVM. Inf. Sci. 2011, 181:3000-3016.
    • (2011) Inf. Sci. , vol.181 , pp. 3000-3016
    • Wei, L.1    Chen, Z.2    Li, J.3
  • 30
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with random hidden nodes
    • Huang G., Chen L., Siew C. Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Trans. Neural Netw. 2006, 17(4):879-892.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 879-892
    • Huang, G.1    Chen, L.2    Siew, C.3
  • 32
    • 0031673055 scopus 로고    scopus 로고
    • Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
    • Huang G., Babri H. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Trans. Neural Netw. 1998, 9(1):224-229.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.1 , pp. 224-229
    • Huang, G.1    Babri, H.2
  • 33
    • 0026190194 scopus 로고
    • A simple method to derive bounds on the size and to train multilayer neural networks
    • Sartori M., Antsaklis P. A simple method to derive bounds on the size and to train multilayer neural networks. IEEE Trans. Neural Netw. 1991, 2(4):467-471.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.4 , pp. 467-471
    • Sartori, M.1    Antsaklis, P.2
  • 34
    • 0025792215 scopus 로고
    • Bounds on the number of hidden neurons in multilayer perceptrons
    • Huang S., Huang Y. Bounds on the number of hidden neurons in multilayer perceptrons. IEEE Trans. Neural Netw. 1991, 2(1):47-55.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.1 , pp. 47-55
    • Huang, S.1    Huang, Y.2
  • 35
    • 0027262895 scopus 로고
    • Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
    • Leshno M., Lin V., Pinkus A., Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw. 1993, 6(6):861-867.
    • (1993) Neural Netw. , vol.6 , Issue.6 , pp. 861-867
    • Leshno, M.1    Lin, V.2    Pinkus, A.3    Schocken, S.4
  • 36
    • 0042892216 scopus 로고
    • Univariant approximation by superpositions of a sigmoidal function
    • Gao B., Xu Y. Univariant approximation by superpositions of a sigmoidal function. J. Math. Anal. Appl. 1993, 178(1):221-226.
    • (1993) J. Math. Anal. Appl. , vol.178 , Issue.1 , pp. 221-226
    • Gao, B.1    Xu, Y.2
  • 37
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4(2):251-257.
    • (1991) Neural Netw. , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 38
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stinchcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2(5):359-366.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 39
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • Funahashi K. On the approximate realization of continuous mappings by neural networks. Neural Netw. 1989, 2(3):183-192.
    • (1989) Neural Netw. , vol.2 , Issue.3 , pp. 183-192
    • Funahashi, K.1
  • 40
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • Huang G., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70(16-18):3056-3062.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.1    Chen, L.2
  • 41
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • Huang G., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71(16):3460-3468.
    • (2008) Neurocomputing , vol.71 , Issue.16 , pp. 3460-3468
    • Huang, G.1    Chen, L.2
  • 43
    • 38649131505 scopus 로고    scopus 로고
    • Incremental extreme learning machine with fully complex hidden nodes
    • Huang G., Li M., Chen L., Siew C. Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 2008, 71(4):576-583.
    • (2008) Neurocomputing , vol.71 , Issue.4 , pp. 576-583
    • Huang, G.1    Li, M.2    Chen, L.3    Siew, C.4
  • 44
    • 85008039450 scopus 로고    scopus 로고
    • Online sequential fuzzy extreme learning machine for function approximation and classification problems
    • Rong H., Huang G., Sundararajan N., Saratchandran P. Online sequential fuzzy extreme learning machine for function approximation and classification problems. IEEE Trans. Syst. Man. Cybern. Part B. Cybern. 2009, 39(4):1067-1072.
    • (2009) IEEE Trans. Syst. Man. Cybern. Part B. Cybern. , vol.39 , Issue.4 , pp. 1067-1072
    • Rong, H.1    Huang, G.2    Sundararajan, N.3    Saratchandran, P.4
  • 45
    • 34047174077 scopus 로고    scopus 로고
    • A fast and accurate online sequential learning algorithm for feedforward networks
    • Liang N., Huang G., Saratchandran P., Sundararajan N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 2006, 17(6):1411-1423.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.6 , pp. 1411-1423
    • Liang, N.1    Huang, G.2    Saratchandran, P.3    Sundararajan, N.4
  • 46
    • 77954299719 scopus 로고    scopus 로고
    • Ensemble of online sequential extreme learning machine
    • Lan Y., Soh Y., Huang G. Ensemble of online sequential extreme learning machine. Neurocomputing 2009, 72(13-15):3391-3395.
    • (2009) Neurocomputing , vol.72 , Issue.13-15 , pp. 3391-3395
    • Lan, Y.1    Soh, Y.2    Huang, G.3
  • 47
    • 56049098499 scopus 로고    scopus 로고
    • Sales forecasting using extreme learning machine with applications in fashion retailing
    • Sun Z., Choi T., Au K., Yu Y. Sales forecasting using extreme learning machine with applications in fashion retailing. Decis. Support Syst. 2008, 46(1):411-419.
    • (2008) Decis. Support Syst. , vol.46 , Issue.1 , pp. 411-419
    • Sun, Z.1    Choi, T.2    Au, K.3    Yu, Y.4
  • 51
    • 67650463106 scopus 로고    scopus 로고
    • Regularized extreme learning machine
    • IEEE Symposium on Computational Intelligence and Data Mining, CIDM'09, IEEE
    • W. Deng, Q. Zheng, L. Chen, Regularized extreme learning machine, in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM'09, IEEE, 2009, pp. 389-395.
    • (2009) , pp. 389-395
    • Deng, W.1    Zheng, Q.2    Chen, L.3
  • 52
    • 77955204500 scopus 로고    scopus 로고
    • Color image watermarking using regularized extreme learning machine
    • SP. ISS. {SI} 3
    • Deng W., Chen L. Color image watermarking using regularized extreme learning machine. Neural Netw. World 2010, 20(Sp. Iss. {SI} 3):317-330.
    • (2010) Neural Netw. World , vol.20 , pp. 317-330
    • Deng, W.1    Chen, L.2
  • 53
    • 44649099490 scopus 로고    scopus 로고
    • Extreme support vector machine classifier
    • Proceedings of the 12th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Springer-Verlag
    • Q. Liu, Q. He, Z. Shi, Extreme support vector machine classifier, in: Proceedings of the 12th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining, Springer-Verlag, 2008, pp. 222-233.
    • (2008) , pp. 222-233
    • Liu, Q.1    He, Q.2    Shi, Z.3
  • 54
    • 84887012141 scopus 로고    scopus 로고
    • Using svms with randomised feature spaces: an extreme learning approach
    • Proceedings of the 18th European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium
    • B. Frénay, M. Verleysen, Using svms with randomised feature spaces: an extreme learning approach, in: Proceedings of the 18th European Symposium on Artificial Neural Networks (ESANN), Bruges, Belgium, vol. 28, 2010, p. 30.
    • (2010) , vol.28 , pp. 30
    • Frénay, B.1    Verleysen, M.2
  • 55
    • 78649492473 scopus 로고    scopus 로고
    • Optimization method based extreme learning machine for classification
    • Huang G., Ding X., Zhou H. Optimization method based extreme learning machine for classification. Neurocomputing 2010, 74(1):155-163.
    • (2010) Neurocomputing , vol.74 , Issue.1 , pp. 155-163
    • Huang, G.1    Ding, X.2    Zhou, H.3
  • 56
    • 0000704059 scopus 로고    scopus 로고
    • Computation with infinite neural networks
    • Williams C. Computation with infinite neural networks. Neural Comput. 1998, 10(5):1203-1216.
    • (1998) Neural Comput. , vol.10 , Issue.5 , pp. 1203-1216
    • Williams, C.1
  • 57
    • 78651426442 scopus 로고    scopus 로고
    • Interpreting extreme learning machine as an approximation to an infinite neural network
    • KDIR 2010: Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, Valencia, Spain
    • E. Parviainen, J. Riihimäki, Y. Miche, A. Lendasse, Interpreting extreme learning machine as an approximation to an infinite neural network, in: KDIR 2010: Proceedings of the International Conference on Knowledge Discovery and Information Retrieval, Valencia, Spain, 2010.
    • (2010)
    • Parviainen, E.1    Riihimäki, J.2    Miche, Y.3    Lendasse, A.4
  • 58
    • 80051670315 scopus 로고    scopus 로고
    • Parameter-insensitive kernel in extreme learning for non-linear support vector regression
    • Frénay B., Verleysen M. Parameter-insensitive kernel in extreme learning for non-linear support vector regression. Neurocomputing 2011, 74:2526-2531.
    • (2011) Neurocomputing , vol.74 , pp. 2526-2531
    • Frénay, B.1    Verleysen, M.2
  • 59
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Meth.) 1996, 58:267-288.
    • (1996) J. R. Stat. Soc. Ser. B (Meth.) , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 61
    • 58849132454 scopus 로고    scopus 로고
    • Op-elm: Theory, experiments and a toolbox
    • Proceedings of the 18th International Conference on Artificial Neural Networks, Part I, ICANN '08, Springer-Verlag, Berlin, Heidelberg
    • Y. Miche, A. Sorjamaa, A. Lendasse, Op-elm: Theory, experiments and a toolbox, in: Proceedings of the 18th International Conference on Artificial Neural Networks, Part I, ICANN '08, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 145-154.
    • (2008) , pp. 145-154
    • Miche, Y.1    Sorjamaa, A.2    Lendasse, A.3
  • 63
    • 33745801137 scopus 로고    scopus 로고
    • Exact 1-norm support vector machines via unconstrained convex differentiable minimization
    • Mangasarian O. Exact 1-norm support vector machines via unconstrained convex differentiable minimization. J. Mach. Learn. Res. 2006, 7:1517-1530.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1517-1530
    • Mangasarian, O.1
  • 64
    • 34250708395 scopus 로고    scopus 로고
    • 1-norm multiclass support vector machines
    • 1-norm multiclass support vector machines. J. Am. Stat. Assoc. 2007, 102(478):583-594.
    • (2007) J. Am. Stat. Assoc. , vol.102 , Issue.478 , pp. 583-594
    • Wang, L.1    Shen, X.2
  • 66
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Hsu C., Lin C. A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 2002, 13(2):415-425.
    • (2002) IEEE Trans. Neural Netw. , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.1    Lin, C.2
  • 67
    • 33745814063 scopus 로고    scopus 로고
    • Which is the best multiclass SVM methodα An empirical study
    • Duan K., Keerthi S. Which is the best multiclass SVM methodα An empirical study. Mult. Classif. Syst. 2005, 732-760.
    • (2005) Mult. Classif. Syst. , pp. 732-760
    • Duan, K.1    Keerthi, S.2
  • 68
    • 84893642917 scopus 로고    scopus 로고
    • Official ELM Toolbox (accessed 6/9/2012).
    • Official ELM Toolbox (accessed 6/9/2012). http://www.ntu.edu.sg/home/egbhuang/ELM_Codes.htm.
  • 69
    • 0037313407 scopus 로고    scopus 로고
    • SMO algorithm for least-squares SVM formulations
    • Keerthi S., Shevade S. SMO algorithm for least-squares SVM formulations. Neural Comput. 2003, 15:487-507.
    • (2003) Neural Comput. , vol.15 , pp. 487-507
    • Keerthi, S.1    Shevade, S.2
  • 70
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, Cambridge, MA, USA, B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.)
    • Platt J.C. Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods 1999, 185-208. MIT Press, Cambridge, MA, USA. B. Schölkopf, C.J.C. Burges, A.J. Smola (Eds.).
    • (1999) Advances in Kernel Methods , pp. 185-208
    • Platt, J.C.1
  • 71
    • 84893643132 scopus 로고    scopus 로고
    • UCI Machine Learning Repository, URL
    • D.N.A. Asuncion, UCI Machine Learning Repository, 2007. URL http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007)
    • Asuncion, D.N.A.1
  • 73
    • 36849072045 scopus 로고    scopus 로고
    • Graph implementations for nonsmooth convex programs
    • V. Blondel, S. Boyd, H. Kimura (Eds.), Recent Advances in Learning and Control (tribute to M. Vidyasagar), Lecture Notes in Control and Information Sciences, Springer
    • M. Grant, S. Boyd, Graph implementations for nonsmooth convex programs, in: V. Blondel, S. Boyd, H. Kimura (Eds.), Recent Advances in Learning and Control (tribute to M. Vidyasagar), Lecture Notes in Control and Information Sciences, Springer, 2008, pp. 95-110.
    • (2008) , pp. 95-110
    • Grant, M.1    Boyd, S.2
  • 74
    • 28444483767 scopus 로고    scopus 로고
    • SVM and kernel Methods Matlab Toolbox, Perception Systemes et Information, INSA de Rouen, Rouen, France
    • S. Canu, Y. Grandvalet, V. Guigue, A. Rakotomamonjy, SVM and kernel Methods Matlab Toolbox, Perception Systemes et Information, INSA de Rouen, Rouen, France, vol. 2, 2005.
    • (2005) , vol.2
    • Canu, S.1    Grandvalet, Y.2    Guigue, V.3    Rakotomamonjy, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.