메뉴 건너뛰기




Volumn 289, Issue 5, 2014, Pages 2765-2775

Intracellular and extracellular carbonic anhydrases cooperate non-enzymatically to enhance activity of monocarboxylate transporters

Author keywords

[No Author keywords available]

Indexed keywords

ION-SENSITIVE ELECTRODES; LACTIC ACID; PH REGULATION; PROTEIN COMPLEXES; PROTEIN EXPRESSION; PROTON-COLLECTING ANTENNA; TRANSPORT METABOLON; XENOPUS OOCYTES;

EID: 84893488377     PISSN: 00219258     EISSN: 1083351X     Source Type: Journal    
DOI: 10.1074/jbc.M113.537043     Document Type: Article
Times cited : (51)

References (54)
  • 1
    • 1242340302 scopus 로고    scopus 로고
    • The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond
    • Halestrap, A. P., and Meredith, D. (2004) The SLC16 gene family-from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Eur. J. Physiol. 447, 619-628
    • (2004) Eur. J. Physiol. , vol.447 , pp. 619-628
    • Halestrap, A.P.1    Meredith, D.2
  • 2
    • 0030774069 scopus 로고    scopus 로고
    • Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons
    • Bröer, S., Rahman, B., Pellegri, G., Pellerin, L., Martin, J. L., Verleysdonk, S., Hamprecht, B., and Magistretti, P. J. (1997) Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. J. Biol. Chem. 272, 30096-30102
    • (1997) J. Biol. Chem. , vol.272 , pp. 30096-30102
    • Bröer, S.1    Rahman, B.2    Pellegri, G.3    Pellerin, L.4    Martin, J.L.5    Verleysdonk, S.6    Hamprecht, B.7    Magistretti, P.J.8
  • 3
    • 0032127127 scopus 로고    scopus 로고
    • Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH
    • Bröer, S., Schneider, H., Bröer, A., and Deitmer, J. W. (1998) Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem. J. 174, 167-174
    • (1998) Biochem. J. , vol.174 , pp. 167-174
    • Bröer, S.1    Schneider, H.2    Bröer, A.3    Deitmer, J.W.4
  • 4
    • 0034663601 scopus 로고    scopus 로고
    • The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells
    • Dimmer, K. S., Friedrich, B., Lang, F., Deitmer, J. W., and Bröer, S. (2000) The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem. J. 350, 219-227
    • (2000) Biochem. J. , vol.350 , pp. 219-227
    • Dimmer, K.S.1    Friedrich, B.2    Lang, F.3    Deitmer, J.W.4    Bröer, S.5
  • 5
    • 0033569442 scopus 로고    scopus 로고
    • The proton-linked monocarboxylate transporter (MCT) family: Structure, function and regulation
    • Halestrap, A. P., and Price, N. T. (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem. J. 343, 281-299
    • (1999) Biochem. J. , vol.343 , pp. 281-299
    • Halestrap, A.P.1    Price, N.T.2
  • 6
    • 12244262261 scopus 로고    scopus 로고
    • Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain
    • Pellerin, L., Bergersen, L. H., Halestrap, A. P., and Pierre, K. (2005) Cellular and subcellular distribution of monocarboxylate transporters in cultured brain cells and in the adult brain. JNeuroscience Res. 79, 55-64
    • (2005) JNeuroscience Res. , vol.79 , pp. 55-64
    • Pellerin, L.1    Bergersen, L.H.2    Halestrap, A.P.3    Pierre, K.4
  • 7
    • 0034254638 scopus 로고    scopus 로고
    • CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression
    • Kirk, P., Wilson, M. C, Heddle, C, Brown, M. H, Barclay, A. N, and Halestrap, A. P. (2000) CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 19, 3896-3904
    • (2000) EMBO J. , vol.19 , pp. 3896-3904
    • Kirk, P.1    Wilson, M.C.2    Heddle, C.3    Brown, M.H.4    Barclay, A.N.5    Halestrap, A.P.6
  • 8
    • 0036479231 scopus 로고    scopus 로고
    • Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ
    • Wilson, M. C, Meredith, D., and Halestrap, A. P. (2002) Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J. Biol. Chem. 277, 3666-3672
    • (2002) J. Biol. Chem. , vol.277 , pp. 3666-3672
    • Wilson, M.C.1    Meredith, D.2    Halestrap, A.P.3
  • 9
    • 22844442936 scopus 로고    scopus 로고
    • Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: The ancillary protein for the insensitive MCT2 is EMBIGIN (gp70) J
    • Wilson, M. C, Meredith, D., Fox, J. E., Manoharan, C, Davies, A. J., and Halestrap, A. P. (2005) Basigin (CD147) is the target for organomercurial inhibition of monocarboxylate transporter isoforms 1 and 4: the ancillary protein for the insensitive MCT2 is EMBIGIN (gp70) J. Biol. Chem. 280, 27213-27221
    • (2005) Biol. Chem. , vol.280 , pp. 27213-27221
    • Wilson, M.C.1    Meredith, D.2    Fox, J.E.3    Manoharan, C.4    Davies, A.J.5    Halestrap, A.P.6
  • 10
    • 0014135426 scopus 로고
    • Carbonic anhydrase: Chemistry, physiology, and inhibition
    • Maren, T. H. (1967) Carbonic anhydrase: Chemistry, physiology, and inhibition. Physiol. Rev. 47, 595-781
    • (1967) Physiol. Rev. , vol.47 , pp. 595-781
    • Maren, T.H.1
  • 12
    • 0025330670 scopus 로고
    • Carbonic anhydrase IV from human lung. Purification, char-acterization, and comparison with membrane carbonic anhydrase from human kidney
    • Zhu, X. L., and Sly, W. S. (1990) Carbonic anhydrase IV from human lung. Purification, char-acterization, and comparison with membrane carbonic anhydrase from human kidney. J. Biol. Chem. 265, 8795-8801
    • (1990) J. Biol. Chem. , vol.265 , pp. 8795-8801
    • Zhu, X.L.1    Sly, W.S.2
  • 17
    • 34250356821 scopus 로고    scopus 로고
    • Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO3T cotransporter
    • Becker, H. M., and Deitmer, J. W. (2007) Carbonic anhydrase II increases the activity of the human electrogenic Na+/HCO3T cotransporter. J. Biol. Chem. 282, 13508-13521
    • (2007) J. Biol. Chem. , vol.282 , pp. 13508-13521
    • Becker, H.M.1    Deitmer, J.W.2
  • 19
    • 33144457846 scopus 로고    scopus 로고
    • A novel carbonic anhydrase II binding site regulates NHE1 activity
    • Li, X., Liu, Y., Alvarez, B. V., Casey, J. R., and Fliegel, L. (2006) A novel carbonic anhydrase II binding site regulates NHE1 activity. Biochemistry 45, 2414-2424
    • (2006) Biochemistry , vol.45 , pp. 2414-2424
    • Li, X.1    Liu, Y.2    Alvarez, B.V.3    Casey, J.R.4    Fliegel, L.5
  • 20
    • 28844503376 scopus 로고    scopus 로고
    • Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase
    • Becker, H. M., Hirnet, D., Fecher-Trost, C, Sültemeyer, D., and Deitmer, J. W. (2005) Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase. J. Biol. Chem. 280, 39882-39889
    • (2005) J. Biol. Chem. , vol.280 , pp. 39882-39889
    • Becker, H.M.1    Hirnet, D.2    Fecher-Trost, C.3    Sültemeyer, D.4    Deitmer, J.W.5
  • 21
    • 52049118802 scopus 로고    scopus 로고
    • +-lactate cotransport via monocarboxylate transporter 1
    • +-lactate cotransport via monocarboxylate transporter 1. J. Biol. Chem. 283, 21655-21667
    • (2008) J. Biol. Chem. , vol.283 , pp. 21655-21667
    • Becker, H.M.1    Deitmer, J.W.2
  • 22
    • 77952214629 scopus 로고    scopus 로고
    • Nonenzymatic augmentation of lactate transport via monocarboxylate transporter isoform 4 by carbonic anhydrase II
    • Becker, H. M., Klier, M., and Deitmer, J. W. (2010) Nonenzymatic augmentation of lactate transport via monocarboxylate transporter isoform 4 by carbonic anhydrase II. J. Membr. Biol. 234, 125-135
    • (2010) J. Membr. Biol. , vol.234 , pp. 125-135
    • Becker, H.M.1    Klier, M.2    Deitmer, J.W.3
  • 24
    • 79952584606 scopus 로고    scopus 로고
    • Intramolecular proton shuttle supports not only catalytic but also noncatalytic function of carbonic anhydrase II
    • Becker, H. M., Klier, M., Schüler, C, McKenna, R., and Deitmer, J. W. (2011) Intramolecular proton shuttle supports not only catalytic but also noncatalytic function of carbonic anhydrase II. Proc. Natl. Acad. Sci. U. S. A. 108, 3071-3076
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 3071-3076
    • Becker, H.M.1    Klier, M.2    Schüler, C.3    McKenna, R.4    Deitmer, J.W.5
  • 25
    • 0142095047 scopus 로고    scopus 로고
    • Direct extracellular interaction between carbonic anhydrase IV and the human NBC1 sodium/bicarbonate co-transporter
    • Alvarez, B. V., Loiselle, F. B., Supuran, C. T., Schwartz, G. J., and Casey, J. R. (2003) Direct extracellular interaction between carbonic anhydrase IV and the human NBC1 sodium/bicarbonate co-transporter. Biochemistry 42, 12321-12329
    • (2003) Biochemistry , vol.42 , pp. 12321-12329
    • Alvarez, B.V.1    Loiselle, F.B.2    Supuran, C.T.3    Schwartz, G.J.4    Casey, J.R.5
  • 27
    • 79961016325 scopus 로고    scopus 로고
    • Transport activity of the high-affinity monocarboxylate transporter MCT2 is enhanced by extracellular carbonic anhydrase IV but not by intracellular carbonic anhydrase II
    • Klier, M., Schüler, C, Halestrap, A. P., Sly, W. S., Deitmer, J. W., and Becker, H. M. (2011) Transport activity of the high-affinity monocarboxylate transporter MCT2 is enhanced by extracellular carbonic anhydrase IV but not by intracellular carbonic anhydrase II. J. Biol. Chem. 286, 27781-27791
    • (2011) J. Biol. Chem. , vol.286 , pp. 27781-27791
    • Klier, M.1    Schüler, C.2    Halestrap, A.P.3    Sly, W.S.4    Deitmer, J.W.5    Becker, H.M.6
  • 29
    • 84893480469 scopus 로고    scopus 로고
    • Transport metabolons with carbonic anhydrases
    • Deitmer, J. W., and Becker, H. M. (2013) Transport metabolons with carbonic anhydrases. Front. Physiol. 4, 291
    • (2013) Front. Physiol. , vol.4 , pp. 291
    • Deitmer, J.W.1    Becker, H.M.2
  • 30
    • 84893477333 scopus 로고    scopus 로고
    • Carbonic anhydrases and their interplay with acid/base-coupled membrane transporters
    • Becker, H. M., Klier, M., and Deitmer, J. W. (2014) Carbonic anhydrases and their interplay with acid/base-coupled membrane transporters. Subcell. Biochem. 75, 105-134
    • (2014) Subcell. Biochem. , vol.75 , pp. 105-134
    • Becker, H.M.1    Klier, M.2    Deitmer, J.W.3
  • 32
    • 0346688718 scopus 로고    scopus 로고
    • Facilitated lactate transport by MCT1 when coexpressed with the sodium bicarbonate cotransporter (NBC) in Xenopus oocytes
    • Becker, H. M., Bröer, S., and Deitmer, J. W. (2004) Facilitated lactate transport by MCT1 when coexpressed with the sodium bicarbonate cotransporter (NBC) in Xenopus oocytes. Biophys. J. 86, 235-247
    • (2004) Biophys. J. , vol.86 , pp. 235-247
    • Becker, H.M.1    Bröer, S.2    Deitmer, J.W.3
  • 33
    • 0016642468 scopus 로고
    • An improved method for the purification of carbonic anhydrase isozymes by affinity chromatography
    • Osborne, W. R., and Tashian, R. E. (1975) An improved method for the purification of carbonic anhydrase isozymes by affinity chromatography. Anal. Biochem. 64, 297-303
    • (1975) Anal. Biochem. , vol.64 , pp. 297-303
    • Osborne, W.R.1    Tashian, R.E.2
  • 34
    • 0026518287 scopus 로고
    • Human carbonic anhydrase IV: Cdna cloning, sequence comparison, and expression in COS cell membranes
    • Okuyama, T., Sato, S., Zhu, X. L., Waheed, A., and Sly, W. S. (1992) Human carbonic anhydrase IV: cDNA cloning, sequence comparison, and expression in COS cell membranes. Proc. Natl. Acad. Sci. U. S. A. 89, 1315-1319
    • (1992) Proc. Natl. Acad. Sci. U. S. A. , vol.89 , pp. 1315-1319
    • Okuyama, T.1    Sato, S.2    Zhu, X.L.3    Waheed, A.4    Sly, W.S.5
  • 35
    • 0029037579 scopus 로고
    • Carbonic anhydrase IV: Role of removal of C-terminal domain in glycosylphosphatidylinositol anchoring and realization of enzyme activity
    • Okuyama, T., Waheed, A., Kusumoto, W., Zhu, X. L., and Sly, W. S. (1995) Carbonic anhydrase IV: role of removal of C-terminal domain in glycosylphosphatidylinositol anchoring and realization of enzyme activity. Arch. Biochem. Biophys. 320, 315-322
    • (1995) Arch. Biochem. Biophys. , vol.320 , pp. 315-322
    • Okuyama, T.1    Waheed, A.2    Kusumoto, W.3    Zhu, X.L.4    Sly, W.S.5
  • 36
    • 0020346412 scopus 로고
    • Carbonic anhydrase: Oxygen-18 exchange catalyzed by an enzyme with rate-contributing proton-transfer steps
    • Silverman, D. N. (1982) Carbonic anhydrase: oxygen-18 exchange catalyzed by an enzyme with rate-contributing proton-transfer steps. Methods Enzymol. 87, 732-752
    • (1982) Methods Enzymol. , vol.87 , pp. 732-752
    • Silverman, D.N.1
  • 37
    • 0000513157 scopus 로고
    • Mass spectrometric measurement of intracellular carbonic anhydrase activity in high and low C (i) cells of chlamydomonas: Studies using O exchange with C/O labeled bicarbonate
    • Sültemeyer, D. F., Fock, H. P., and Canvin, D. T. (1990) Mass Spectrometric Measurement of Intracellular Carbonic Anhydrase Activity in High and Low C (i) Cells of Chlamydomonas: Studies Using O Exchange with C/O Labeled Bicarbonate. Plant Physiol. 94, 1250-7
    • (1990) Plant Physiol. , vol.94 , pp. 1250-1257
    • Sültemeyer, D.F.1    Fock, H.P.2    Canvin, D.T.3
  • 39
    • 0026055861 scopus 로고
    • Electrogenic sodium-dependent bicarbonate secretion by glial cells of the leech central nervous system
    • Deitmer, J. W. (1991) Electrogenic sodium-dependent bicarbonate secretion by glial cells of the leech central nervous system. J. Gen. Physiol. 98, 637-655
    • (1991) J. Gen. Physiol. , vol.98 , pp. 637-655
    • Deitmer, J.W.1
  • 41
    • 4344587249 scopus 로고    scopus 로고
    • PH microdomains in oligodendrocytes
    • Ro, H., and Carson, J. H. (2004) pH microdomains in oligodendrocytes. J. Biol. Chem. 279, 37115-37123
    • (2004) J. Biol. Chem. , vol.279 , pp. 37115-37123
    • Ro, H.1    Carson, J.H.2
  • 42
    • 84856711018 scopus 로고    scopus 로고
    • General requirement for harvesting antennae at Ca and H channels and transporters
    • Martínez, C, Kalise, D., and Barros, L. F. (2010) General requirement for harvesting antennae at Ca and H channels and transporters. Front. Neuroenergetics 2, 1-8
    • (2010) Front. Neuroenergetics , vol.2 , pp. 1-8
    • Martínez, C.1    Kalise, D.2    Barros, L.F.3
  • 43
    • 0032079334 scopus 로고    scopus 로고
    • Extracellular space structure revealed by diffusion analysis
    • Nicholson, C, and Syková, E. (1998) Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21, 207-215
    • (1998) Trends Neurosci. , vol.21 , pp. 207-215
    • Nicholson, C.1    Syková, E.2
  • 44
    • 55949130305 scopus 로고    scopus 로고
    • Diffusion in brain extracellular space
    • Syková, E., and Nicholson, C. (2008) Diffusion in brain extracellular space. Physiol. Rev. 88, 1277-1340
    • (2008) Physiol. Rev. , vol.88 , pp. 1277-1340
    • Syková, E.1    Nicholson, C.2
  • 45
    • 0027763898 scopus 로고
    • Neurotransmitters regulate energy metabolism in astrocytes: Implications for the metabolic trafficking between neural cells
    • Magistretti, P. J., Sorg, O., Yu, N, Martin, J. L., and Pellerin, L. (1993) Neurotransmitters regulate energy metabolism in astrocytes: implications for the metabolic trafficking between neural cells. Dev. Neurosci. 15, 306-312
    • (1993) Dev. Neurosci. , vol.15 , pp. 306-312
    • Magistretti, P.J.1    Sorg, O.2    Yu, N.3    Martin, J.L.4    Pellerin, L.5
  • 47
    • 78650764923 scopus 로고    scopus 로고
    • Food for thought: The importance of glucose and other energy substrates for sustaining brain function under varying levels of activity
    • Pellerin, L. (2010) Food for thought: the importance of glucose and other energy substrates for sustaining brain function under varying levels of activity. Diabetes Metab. 36, 59-63
    • (2010) Diabetes Metab. , vol.36 , pp. 59-63
    • Pellerin, L.1
  • 48
  • 49
    • 34547624611 scopus 로고    scopus 로고
    • Supply and demand in cerebral energy metabolism: The role of nutrient transporters
    • Simpson, I. A., Carruthers, A., and Vannucci, S. J. (2007) Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J. Cereb. Blood Flow Metab. 27, 1766-1791
    • (2007) J. Cereb. Blood Flow Metab. , vol.27 , pp. 1766-1791
    • Simpson, I.A.1    Carruthers, A.2    Vannucci, S.J.3
  • 50
    • 0032584084 scopus 로고    scopus 로고
    • Expression of monocarboxylate transporter mRNAs in mouse brain: Support for a distinct role of lactate as an energy substrate for the neonatal vs adult brain
    • Pellerin, L., Pellegri, G., Martin, J. L., and Magistretti, P. J. (1998) Expression of monocarboxylate transporter mRNAs in mouse brain: support for a distinct role of lactate as an energy substrate for the neonatal vs. adult brain. Proc. Natl. Acad. Sci. U. S. A. 95, 3990-3995
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 3990-3995
    • Pellerin, L.1    Pellegri, G.2    Martin, J.L.3    Magistretti, P.J.4
  • 51
    • 0036130456 scopus 로고    scopus 로고
    • Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system
    • Bergersen, L., Rafiki, A., and Ottersen, O. P. (2002) Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system. Neurochem. Res. 27, 89-96
    • (2002) Neurochem. Res. , vol.27 , pp. 89-96
    • Bergersen, L.1    Rafiki, A.2    Ottersen, O.P.3
  • 52
    • 21344444566 scopus 로고    scopus 로고
    • Monocarboxylate transporters in the central nervous system: Distribution, regulation and function
    • Pierre, K., and Pellerin, L. (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J. Neurochem. 94, 1-14
    • (2005) J. Neurochem. , vol.94 , pp. 1-14
    • Pierre, K.1    Pellerin, L.2
  • 53
    • 0019485423 scopus 로고
    • Glial cell markers in the reeler mutant mouse: A biochemical and immunohistological study
    • Ghandour, M. S., Derer, P., Labourdette, G., Delaunoy, J. P., and Langley, O. K. (1981) Glial cell markers in the reeler mutant mouse: a biochemical and immunohistological study. J. Neurochem. 36, 195-200
    • (1981) J. Neurochem. , vol.36 , pp. 195-200
    • Ghandour, M.S.1    Derer, P.2    Labourdette, G.3    Delaunoy, J.P.4    Langley, O.K.5
  • 54
    • 32344442199 scopus 로고    scopus 로고
    • Functional demonstration of surface carbonic anhydraseIV activity onrat astrocytes
    • Svichar, N., Esquenazi, S., Waheed, A., Sly, W. S., and Chesler, M. (2006) Functional demonstration of surface carbonic anhydraseIV activity onrat astrocytes. Glia 53, 241-247
    • (2006) Glia , vol.53 , pp. 241-247
    • Svichar, N.1    Esquenazi, S.2    Waheed, A.3    Sly, W.S.4    Chesler, M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.