-
3
-
-
4243721498
-
-
10.1103/PhysRevLett.45.1356
-
J. B. Pendry, Phys. Rev. Lett. 45, 1356 (1980). 10.1103/PhysRevLett.45. 1356
-
(1980)
Phys. Rev. Lett.
, vol.45
, pp. 1356
-
-
Pendry, J.B.1
-
5
-
-
0017532162
-
-
10.1007/BF00882639
-
V. Dose, Appl. Phys. 14, 117 (1977). 10.1007/BF00882639
-
(1977)
Appl. Phys.
, vol.14
, pp. 117
-
-
Dose, V.1
-
6
-
-
0022012059
-
-
10.1088/0022-3735/18/2/014
-
N. Babbe, W. Drube, I. Schafer, and M. Skibowski, J. Phys. E 18, 158 (1985). 10.1088/0022-3735/18/2/014
-
(1985)
J. Phys. e
, vol.18
, pp. 158
-
-
Babbe, N.1
Drube, W.2
Schafer, I.3
Skibowski, M.4
-
8
-
-
0022756632
-
-
10.1088/0022-3735/19/7/011
-
D. Funnemann and H. Merz, J. Phys. E 19, 554 (1986). 10.1088/0022-3735/ 19/7/011
-
(1986)
J. Phys. e
, vol.19
, pp. 554
-
-
Funnemann, D.1
Merz, H.2
-
9
-
-
0002356923
-
-
10.1063/1.1144407
-
K. Yokoyama, K. Nishihara, K. Mimura, Y. Hari, M. Taniguchi, Y. Ueda, and M. Fujisawa, Rev. Sci. Instrum. 64, 87 (1993). 10.1063/1.1144407
-
(1993)
Rev. Sci. Instrum.
, vol.64
, pp. 87
-
-
Yokoyama, K.1
Nishihara, K.2
Mimura, K.3
Hari, Y.4
Taniguchi, M.5
Ueda, Y.6
Fujisawa, M.7
-
12
-
-
34548404321
-
-
10.1063/1.2771096
-
M. Budke, V. Renken, H. Liebl, G. Rangelov, and M. Donath, Rev. Sci. Instrum. 78, 083903 (2007). 10.1063/1.2771096
-
(2007)
Rev. Sci. Instrum.
, vol.78
, pp. 083903
-
-
Budke, M.1
Renken, V.2
Liebl, H.3
Rangelov, G.4
Donath, M.5
-
13
-
-
20544443016
-
-
10.1063/1.1928192
-
R. Stiepel, R. Ostendorf, C. Benesch, and H. Zacharias, Rev. Sci. Instrum. 76, 063109 (2005). 10.1063/1.1928192
-
(2005)
Rev. Sci. Instrum.
, vol.76
, pp. 063109
-
-
Stiepel, R.1
Ostendorf, R.2
Benesch, C.3
Zacharias, H.4
-
14
-
-
80053559973
-
-
10.1063/1.3630948
-
M. Maniraj, S. W. D'Souza, J. Nayak, A. Rai, S. Singh, B. N. R. Sekhar, and S. R. Barman, Rev. Sci. Instrum. 82, 093901 (2011). 10.1063/1.3630948
-
(2011)
Rev. Sci. Instrum.
, vol.82
, pp. 093901
-
-
Maniraj, M.1
D'Souza, S.W.2
Nayak, J.3
Rai, A.4
Singh, S.5
Sekhar, B.N.R.6
Barman, S.R.7
-
17
-
-
84862689105
-
-
10.1016/j.cplett.2012.04.058
-
H. Yoshida, Chem. Phys. Lett. 539-540, 180 (2012). 10.1016/j.cplett.2012. 04.058
-
(2012)
Chem. Phys. Lett.
, vol.539-540
, pp. 180
-
-
Yoshida, H.1
-
18
-
-
84887354700
-
-
10.1063/1.4822119
-
H. Yoshida, Rev. Sci. Instrum. 84, 103901 (2013). 10.1063/1.4822119
-
(2013)
Rev. Sci. Instrum.
, vol.84
, pp. 103901
-
-
Yoshida, H.1
-
19
-
-
0038188968
-
-
10.1126/science.287.5458.1658
-
B. Boudaiffa, P. Cloutier, D. Hunting, M. A. Huels, and L. Sanche, Science 287, 1658 (2000). 10.1126/science.287.5458.1658
-
(2000)
Science
, vol.287
, pp. 1658
-
-
Boudaiffa, B.1
Cloutier, P.2
Hunting, D.3
Huels, M.A.4
Sanche, L.5
-
20
-
-
84878279227
-
-
10.1021/am400786c
-
S. Fabiano, H. Yoshida, Z. H. Chen, A. Facchetti, and M. A. Loi, ACS Appl. Mater. Interfaces 5, 4417 (2013). 10.1021/am400786c
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 4417
-
-
Fabiano, S.1
Yoshida, H.2
Chen, Z.H.3
Facchetti, A.4
Loi, M.A.5
-
21
-
-
84884852131
-
-
10.1063/1.4821445
-
W. Han, H. Yoshida, N. Ueno, and S. Kera, Appl. Phys. Lett. 103, 123303 (2013). 10.1063/1.4821445
-
(2013)
Appl. Phys. Lett.
, vol.103
, pp. 123303
-
-
Han, W.1
Yoshida, H.2
Ueno, N.3
Kera, S.4
-
22
-
-
84893422971
-
-
The error function is integral of the Gaussian function. Hence, the fitting the error function to the original spectrum is mathematically equivalent to fitting the Gaussian function to the first derivative of the spectrum.
-
The error function is integral of the Gaussian function. Hence, the fitting the error function to the original spectrum is mathematically equivalent to fitting the Gaussian function to the first derivative of the spectrum.
-
-
-
-
24
-
-
0013105933
-
-
10.1016/S1566-1199(02)00033-2
-
W. Y. Gao and A. Kahn, Org. Electron. 3, 53 (2002). 10.1016/S1566- 1199(02)00033-2
-
(2002)
Org. Electron.
, vol.3
, pp. 53
-
-
Gao, W.Y.1
Kahn, A.2
|