-
4
-
-
84877802320
-
Causality in linear nongaussian acyclic models in the presence of latent gaussian confounders
-
Chen, Z., & Chan, L. (2013). Causality in linear nongaussian acyclic models in the presence of latent gaussian confounders. Neural Computation, 25, 1605-1641.
-
(2013)
Neural Computation
, vol.25
, pp. 1605-1641
-
-
Chen, Z.1
Chan, L.2
-
5
-
-
0028416938
-
Independent component analysis, a new concept?
-
Comon, P. (1994). Independent component analysis, a new concept?. Signal Processing, 36, 62-83.
-
(1994)
Signal Processing
, vol.36
, pp. 62-83
-
-
Comon, P.1
-
7
-
-
82055200638
-
Discovering unconfounded causal relationships using linear non-gaussian models
-
New Frontiers in Artificial Intelligence, Lecture Notes in Computer Science, 6797 . New York: Springer.
-
Entner, D., & Hoyer, P. O. (2011). Discovering unconfounded causal relationships using linear non-gaussian models. New Frontiers in Artificial Intelligence, Lecture Notes in Computer Science, 6797 (pp. 181-195). New York: Springer.
-
(2011)
, pp. 181-195
-
-
Entner, D.1
Hoyer, P.O.2
-
9
-
-
0041924877
-
Dynamic causal modelling
-
Friston, K. J., Harrison, L., & Penny,W. (2003). Dynamic causal modelling. Neuroimage, 19, 1273-1302.
-
(2003)
Neuroimage
, vol.19
, pp. 1273-1302
-
-
Friston, K.J.1
Harrison, L.2
Penny, W.3
-
10
-
-
85162060108
-
A kernel statistical test of independence
-
In J. Platt, D. Koller, Y. Singe, & S. Roweis (Eds.),Cambridge, MA: MIT Press., 20
-
Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., & Smola, A. J. (2008). A kernel statistical test of independence. In J. Platt, D. Koller, Y. Singe, & S. Roweis (Eds.), Advances in neural information processing systems, 20 (pp. 585-592). Cambridge, MA: MIT Press.
-
(2008)
Advances in neural information processing systems
, pp. 585-592
-
-
Gretton, A.1
Fukumizu, K.2
Teo, C.H.3
Song, L.4
Schölkopf, B.5
Smola, A.J.6
-
11
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.),
-
Hoyer, P. O., Janzing, D., Mooij, J., Peters, J., & Schölkopf, B. (2009).Nonlinear causal discovery with additive noise models. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems, 21 (pp. 689-696).
-
(2009)
Advances in neural information processing systems
, vol.21
, pp. 689-696
-
-
Hoyer, P.O.1
Janzing, D.2
Mooij, J.3
Peters, J.4
Schölkopf, B.5
-
12
-
-
52949107186
-
Estimation of causal effects using linear non-gaussian causal models with hidden variables
-
Hoyer, P. O., Shimizu, S., Kerminen, A., & Palviainen, M. (2008). Estimation of causal effects using linear non-gaussian causal models with hidden variables. International Journal of Approximate Reasoning, 49, 362-378.
-
(2008)
International Journal of Approximate Reasoning
, vol.49
, pp. 362-378
-
-
Hoyer, P.O.1
Shimizu, S.2
Kerminen, A.3
Palviainen, M.4
-
14
-
-
84873446677
-
Pairwise likelihood ratios for estimation of non-gaussian structural equation models
-
Hyvärinen, A., & Smith, S. M. (2013). Pairwise likelihood ratios for estimation of non-gaussian structural equation models. Journal of Machine Learning Research, 14, 111-152.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 111-152
-
-
Hyvärinen, A.1
Smith, S.M.2
-
15
-
-
0034133184
-
Learning overcomplete representations
-
Lewicki, M.,&Sejnowski, T. J. (2000). Learning overcomplete representations. Neural Computation, 12, 337-365.
-
(2000)
Neural Computation
, vol.12
, pp. 337-365
-
-
Lewicki, M.1
Sejnowski, T.J.2
-
16
-
-
71149096052
-
Regression by dependence minimization and its application to causal inference in additive noise models
-
In Proceedings of the 26th International Conference on Machine Learning (ICML2009), Madison,WI: Omnipress., Canada
-
Mooij, J., Janzing, D., Peters, J., & Schölkopf, B. (2009). Regression by dependence minimization and its application to causal inference in additive noise models. In Proceedings of the 26th International Conference on Machine Learning (ICML2009), Montreal, Canada (pp. 745-752). Madison,WI: Omnipress.
-
(2009)
Montreal
, pp. 745-752
-
-
Mooij, J.1
Janzing, D.2
Peters, J.3
Schölkopf, B.4
-
17
-
-
77956888769
-
Causal diagrams for empirical research
-
Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82, 669-688.
-
(1995)
Biometrika
, vol.82
, pp. 669-688
-
-
Pearl, J.1
-
19
-
-
33749326177
-
A linear nongaussian acyclic model for causal discovery
-
Shimizu, S., Hoyer, P. O., Hyvärinen, A., & Kerminen, A. (2006). A linear nongaussian acyclic model for causal discovery. Journal of Machine Learning Research, 7, 2003-2030.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.O.2
Hyvärinen, A.3
Kerminen, A.4
-
20
-
-
79955829373
-
DirectLiNGAM: A direct method for learning a linear non-gaussian structural equation model
-
Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., et al. (2011). DirectLiNGAM: A direct method for learning a linear non-gaussian structural equation model. Journal of Machine Learning Research, 12, 1225-1248.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 1225-1248
-
-
Shimizu, S.1
Inazumi, T.2
Sogawa, Y.3
Hyvärinen, A.4
Kawahara, Y.5
Washio, T.6
-
21
-
-
0000955487
-
On a property of the normal distribution
-
Skitovitch, W. P. (1953). On a property of the normal distribution. Doklady Akademii Nauk SSSR, 89, 217-219.
-
(1953)
Doklady Akademii Nauk SSSR
, vol.89
, pp. 217-219
-
-
Skitovitch, W.P.1
-
22
-
-
78649717035
-
Network modelling methods for FMRI
-
Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., et al. (2011). Network modelling methods for FMRI. NeuroImage, 54, 875-891.
-
(2011)
NeuroImage
, vol.54
, pp. 875-891
-
-
Smith, S.M.1
Miller, K.L.2
Salimi-Khorshidi, G.3
Webster, M.4
Beckmann, C.F.5
Nichols, T.E.6
-
23
-
-
0003614273
-
-
(2nd ed.). Cambridge, MA: MIT Press.
-
Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search (2nd ed.). Cambridge, MA: MIT Press.
-
(2000)
Causation, prediction, and search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
-
24
-
-
84867666606
-
Estimation of causal orders in a linear non-Gaussian acyclic model: a method robust against latent confounders
-
In Proceedings of International Conference on Artificial Neural Networks (ICANN2012),Lausanne, Switzerland , New York: Springer.
-
Tashiro, T., Shimizu, S., Hyvärinen, A., & Washio, T. (2012). Estimation of causal orders in a linear non-Gaussian acyclic model: a method robust against latent confounders. In Proceedings of International Conference on Artificial Neural Networks (ICANN2012), Lausanne, Switzerland (pp. 491-498). New York: Springer.
-
(2012)
, pp. 491-498
-
-
Tashiro, T.1
Shimizu, S.2
Hyvärinen, A.3
Washio, T.4
|