메뉴 건너뛰기




Volumn 7552 LNCS, Issue PART 1, 2012, Pages 491-498

Estimation of causal orders in a linear non-Gaussian acyclic model: A method robust against latent confounders

Author keywords

causal Bayesian networks; latent confounders; non Gaussianity

Indexed keywords

ARTIFICIAL DATA; CAUSAL BAYESIAN NETWORK; CAUSAL ORDER; CAUSAL ORDERING; ESTIMATION RESULTS; LATENT CONFOUNDERS; MODEL ASSUMPTIONS; NON-GAUSSIAN; NONGAUSSIANITY;

EID: 84867666606     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-33269-2_62     Document Type: Conference Paper
Times cited : (4)

References (13)
  • 3
    • 82055200638 scopus 로고    scopus 로고
    • Discovering Unconfounded Causal Relationships Using Linear Non-Gaussian Models
    • Bekki, D. (ed.) JSAI-isAI 2010. Springer, Heidelberg
    • Entner, D., Hoyer, P.O.: Discovering Unconfounded Causal Relationships Using Linear Non-Gaussian Models. In: Bekki, D. (ed.) JSAI-isAI 2010. LNCS (LNAI), vol. 6797, pp. 181-195. Springer, Heidelberg (2011)
    • (2011) LNCS (LNAI) , vol.6797 , pp. 181-195
    • Entner, D.1    Hoyer, P.O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.