-
3
-
-
82055200638
-
Discovering Unconfounded Causal Relationships Using Linear Non-Gaussian Models
-
Bekki, D. (ed.) JSAI-isAI 2010. Springer, Heidelberg
-
Entner, D., Hoyer, P.O.: Discovering Unconfounded Causal Relationships Using Linear Non-Gaussian Models. In: Bekki, D. (ed.) JSAI-isAI 2010. LNCS (LNAI), vol. 6797, pp. 181-195. Springer, Heidelberg (2011)
-
(2011)
LNCS (LNAI)
, vol.6797
, pp. 181-195
-
-
Entner, D.1
Hoyer, P.O.2
-
5
-
-
85162060108
-
A kernel statistical test of independence
-
MIT Press, Cambridge
-
Gretton, A., Fukumizu, K., Teo, C., Song, L., Schölkopf, B., Smola, A.J.: A kernel statistical test of independence. In: Advances in Neural Information Processing Systems, vol. 20. MIT Press, Cambridge (2008)
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
-
-
Gretton, A.1
Fukumizu, K.2
Teo, C.3
Song, L.4
Schölkopf, B.5
Smola, A.J.6
-
6
-
-
84858789485
-
Nonlinear causal discovery with additive noise models
-
Hoyer, P.O., Janzing, D., Mooij, J., Peters, J., Schölkopf, B.: Nonlinear causal discovery with additive noise models. In: Advances in Neural Information Processing Systems, vol. 21, pp. 689-696 (2009)
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 689-696
-
-
Hoyer, P.O.1
Janzing, D.2
Mooij, J.3
Peters, J.4
Schölkopf, B.5
-
7
-
-
52949107186
-
Estimation of causal effects using linear non-gaussian causal models with hidden variables
-
Hoyer, P.O., Shimizu, S., Kerminen, A., Palviainen, M.: Estimation of causal effects using linear non-gaussian causal models with hidden variables. International Journal of Approximate Reasoning 49(2), 362-378 (2008)
-
(2008)
International Journal of Approximate Reasoning
, vol.49
, Issue.2
, pp. 362-378
-
-
Hoyer, P.O.1
Shimizu, S.2
Kerminen, A.3
Palviainen, M.4
-
8
-
-
84855201032
-
-
Wiley, New York
-
Hyvärinen, A., Karhunen, J., Oja, E.: Independent component analysis. Wiley, New York (2001)
-
(2001)
Independent Component Analysis
-
-
Hyvärinen, A.1
Karhunen, J.2
Oja, E.3
-
9
-
-
71149096052
-
Regression by dependence minimization and its application to causal inference in additive noise models
-
Mooij, J., Janzing, D., Peters, J., Schölkopf, B.: Regression by dependence minimization and its application to causal inference in additive noise models. In: Proc. the 26th Int. Conf. on Machine Learning (ICML 2009), pp. 745-752 (2009)
-
(2009)
Proc. the 26th Int. Conf. on Machine Learning (ICML 2009)
, pp. 745-752
-
-
Mooij, J.1
Janzing, D.2
Peters, J.3
Schölkopf, B.4
-
10
-
-
33749326177
-
A linear non-gaussian acyclic model for causal discovery
-
Shimizu, S., Hoyer, P.O., Hyvärinen, A., Kerminen, A.: A linear non-gaussian acyclic model for causal discovery. J. Mach. Learn. Res. 7, 2003-2030 (2006)
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2003-2030
-
-
Shimizu, S.1
Hoyer, P.O.2
Hyvärinen, A.3
Kerminen, A.4
-
11
-
-
79955829373
-
DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model
-
Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., Hoyer, P.O., Bollen, K.: DirectLiNGAM: A direct method for learning a linear non-Gaussian structural equation model. J. Mach. Learn. Res. 12, 1225-1248 (2011)
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 1225-1248
-
-
Shimizu, S.1
Inazumi, T.2
Sogawa, Y.3
Hyvärinen, A.4
Kawahara, Y.5
Washio, T.6
Hoyer, P.O.7
Bollen, K.8
-
12
-
-
78649717035
-
Network modelling methods for FMRI
-
Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., Woolrich, M.W.: Network modelling methods for FMRI. NeuroImage 54(2), 875-891 (2011)
-
(2011)
NeuroImage
, vol.54
, Issue.2
, pp. 875-891
-
-
Smith, S.M.1
Miller, K.L.2
Salimi-Khorshidi, G.3
Webster, M.4
Beckmann, C.F.5
Nichols, T.E.6
Ramsey, J.D.7
Woolrich, M.W.8
-
13
-
-
0003614273
-
-
Springer 2nd edn. MIT Press
-
Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer (1993); 2nd edn. MIT Press (2000)
-
(1993)
Causation, Prediction, and Search
-
-
Spirtes, P.1
Glymour, C.2
Scheines, R.3
|