메뉴 건너뛰기




Volumn 60, Issue 1, 2014, Pages 53-64

White box radial basis function classifiers with component selection for clinical prediction models

Author keywords

Clinical decision support; Feature selection; Interpretable support vector machines; Radial basis functions; White box methods

Indexed keywords

CLINICAL DECISION SUPPORT; LOGISTIC REGRESSION MODELING; RADIAL BASIS FUNCTION CLASSIFIERS; RADIAL BASIS FUNCTIONS; RECEIVER OPERATING CHARACTERISTIC CURVES; SUPPORT VECTOR MACHINE (SVMS); WHITE BOX; WISCONSIN BREAST CANCER DATASET;

EID: 84892896473     PISSN: 09333657     EISSN: 18732860     Source Type: Journal    
DOI: 10.1016/j.artmed.2013.10.001     Document Type: Article
Times cited : (26)

References (58)
  • 2
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters 1999, 9(3):293-300.
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 4
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):531-537.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6
  • 5
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • Furey T.S., Cristianini N., Duffy N., Bednarski D.W., Schummer M., Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16(10):906-914.
    • (2000) Bioinformatics , vol.16 , Issue.10 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 6
    • 85146422424 scopus 로고
    • A practical approach to feature selection
    • Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA, ISBN: 1-5586-247-X, D. Sleeman, P. Edwards (Eds.)
    • Kira K., Rendell L.A. A practical approach to feature selection. Proceedings of the ninth international workshop on machine learning (ML92) 1992, 249-256. Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA, ISBN: 1-5586-247-X. D. Sleeman, P. Edwards (Eds.).
    • (1992) Proceedings of the ninth international workshop on machine learning (ML92) , pp. 249-256
    • Kira, K.1    Rendell, L.A.2
  • 7
    • 34247622378 scopus 로고    scopus 로고
    • Iterative RELIEF for feature weighting: algorithms, theories, and applications
    • Sun Y. Iterative RELIEF for feature weighting: algorithms, theories, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 2007, 29(6):1035-1051.
    • (2007) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.29 , Issue.6 , pp. 1035-1051
    • Sun, Y.1
  • 9
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G.H. Wrappers for feature subset selection. Artificial Intelligence 1997, 97(1):273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 11
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 2002, 46(1-3):389-422.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 15
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 1997, 97:245-271.
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 17
    • 0002709342 scopus 로고    scopus 로고
    • Feature selection via concave minimization and support vector machines
    • Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, ISBN: 1-55860-556-8, J. Shavlik (Ed.)
    • Bradley P.S., Mangasarian O.L. Feature selection via concave minimization and support vector machines. Proceedings of the fifteenth international conference on machine learning (ICML) 1998, 82-90. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, ISBN: 1-55860-556-8. J. Shavlik (Ed.).
    • (1998) Proceedings of the fifteenth international conference on machine learning (ICML) , pp. 82-90
    • Bradley, P.S.1    Mangasarian, O.L.2
  • 18
    • 30044438683 scopus 로고    scopus 로고
    • Combined svm-based feature selection and classification
    • Neumann J., Schnörr C., Steidl G. Combined svm-based feature selection and classification. Machine Learning 2005, 61(1-3):129-150.
    • (2005) Machine Learning , vol.61 , Issue.1-3 , pp. 129-150
    • Neumann, J.1    Schnörr, C.2    Steidl, G.3
  • 19
    • 49549102637 scopus 로고    scopus 로고
    • Feature selection for nonlinear kernel support vector machines
    • ISBN: 0-7695-3033-8, A.K.H. Tung, Q. Zhu, N. Ramakrishnan, O.R. Zaane, Y. Shi, C.W. Clifton (Eds.)
    • Mangasarian O.L., Kou G. Feature selection for nonlinear kernel support vector machines. Proceedings of the Seventh IEEE International Conference on Data Mining Workshops. ICDMW 2007, 231-236. ISBN: 0-7695-3033-8. A.K.H. Tung, Q. Zhu, N. Ramakrishnan, O.R. Zaane, Y. Shi, C.W. Clifton (Eds.).
    • (2007) Proceedings of the Seventh IEEE International Conference on Data Mining Workshops. ICDMW , pp. 231-236
    • Mangasarian, O.L.1    Kou, G.2
  • 20
    • 77956551904 scopus 로고    scopus 로고
    • Learning sparse svm for feature selection on very high dimensional datasets
    • Omnipress, Madison, WI, USA, J. Fürnkranz, T. Joachims (Eds.)
    • Tan M., Wang L., Tsang I.W.I. Learning sparse svm for feature selection on very high dimensional datasets. Proceedings of the 27th international conference on machine learning (ICML) 2010, 1047-1054. Omnipress, Madison, WI, USA. J. Fürnkranz, T. Joachims (Eds.).
    • (2010) Proceedings of the 27th international conference on machine learning (ICML) , pp. 1047-1054
    • Tan, M.1    Wang, L.2    Tsang, I.W.I.3
  • 21
    • 77958106713 scopus 로고    scopus 로고
    • Simultaneous feature selection and classification using kernel-penalized support vector machines
    • Maldonado S., Weber R., Basak J. Simultaneous feature selection and classification using kernel-penalized support vector machines. Information Sciences 2011, 181(1):115-128.
    • (2011) Information Sciences , vol.181 , Issue.1 , pp. 115-128
    • Maldonado, S.1    Weber, R.2    Basak, J.3
  • 22
    • 33644921465 scopus 로고    scopus 로고
    • Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach
    • Etchells T.A., Lisboa P.J.G. Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach. IEEE Transactions on Neural Networks 2006, 17(2):374-384.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.2 , pp. 374-384
    • Etchells, T.A.1    Lisboa, P.J.G.2
  • 28
    • 0003732572 scopus 로고    scopus 로고
    • Regression modeling strategies. With applications to linear models logistic regression and survival analysis
    • Springer, New York, USA
    • Harrell F. Regression modeling strategies. With applications to linear models logistic regression and survival analysis. Springer Series in Statistics 2001, Springer, New York, USA.
    • (2001) Springer Series in Statistics
    • Harrell, F.1
  • 29
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • Breiman L. Better subset regression using the nonnegative garrote. Technometrics 1995, 37(4):373-384.
    • (1995) Technometrics , vol.37 , Issue.4 , pp. 373-384
    • Breiman, L.1
  • 30
    • 33847350805 scopus 로고    scopus 로고
    • Component selection and smoothing in multivariate nonparametric regression
    • Lin Y., Zhang H.H. Component selection and smoothing in multivariate nonparametric regression. Annals of Statistics 2006, 34(5):2272-2297.
    • (2006) Annals of Statistics , vol.34 , Issue.5 , pp. 2272-2297
    • Lin, Y.1    Zhang, H.H.2
  • 32
    • 0036643063 scopus 로고    scopus 로고
    • Structural modelling with sparse kernels
    • Gunn S.R., Kandola J.S. Structural modelling with sparse kernels. Machine Learning 2002, 48:137-163.
    • (2002) Machine Learning , vol.48 , pp. 137-163
    • Gunn, S.R.1    Kandola, J.S.2
  • 33
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • Mercer J. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society A 1909, 209:415-446.
    • (1909) Philosophical Transactions of the Royal Society A , vol.209 , pp. 415-446
    • Mercer, J.1
  • 36
    • 0031015557 scopus 로고    scopus 로고
    • The lasso method for variable selection in the Cox model
    • Tibshirani R. The lasso method for variable selection in the Cox model. Statistics in Medicine 1997, 16(4):267-288.
    • (1997) Statistics in Medicine , vol.16 , Issue.4 , pp. 267-288
    • Tibshirani, R.1
  • 39
    • 0023710206 scopus 로고
    • Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
    • DeLong E.R., DeLong D.M., Clarke-Pearson D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988, 44(3):837-845.
    • (1988) Biometrics , vol.44 , Issue.3 , pp. 837-845
    • DeLong, E.R.1    DeLong, D.M.2    Clarke-Pearson, D.L.3
  • 40
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT Press, Cambridge, MA, USA, A.J. Smola, P. Bartlett, B. Schoelkopf, D. Schuurmans (Eds.)
    • Platt J.C. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers 1999, 61-74. MIT Press, Cambridge, MA, USA. A.J. Smola, P. Bartlett, B. Schoelkopf, D. Schuurmans (Eds.).
    • (1999) Advances in large margin classifiers , pp. 61-74
    • Platt, J.C.1
  • 42
    • 67649586444 scopus 로고    scopus 로고
    • Feature ranking by weighting and ISE criterion of nonparametric density estimation
    • Wang X., Wang S. Feature ranking by weighting and ISE criterion of nonparametric density estimation. Journal of Applied Sciences 2009, 9(6):1014-1024.
    • (2009) Journal of Applied Sciences , vol.9 , Issue.6 , pp. 1014-1024
    • Wang, X.1    Wang, S.2
  • 44
    • 84992726552 scopus 로고
    • Estimating attributes: analysis and extensions of RELIEF
    • Springer-Verlag New York, Inc., Secaucus, NJ, USA, ISBN: 3-540-57868-4, F. Bergadano, L. De Raedt (Eds.)
    • Kononenko I. Estimating attributes: analysis and extensions of RELIEF. Proceedings of the European conference on machine learning (ECML-94) 1994, 171-182. Springer-Verlag New York, Inc., Secaucus, NJ, USA, ISBN: 3-540-57868-4. F. Bergadano, L. De Raedt (Eds.).
    • (1994) Proceedings of the European conference on machine learning (ECML-94) , pp. 171-182
    • Kononenko, I.1
  • 48
    • 84971673630 scopus 로고    scopus 로고
    • Decision tree decomposition-based complex feature selection for text chunking
    • IEEE, Piscataway, NJ, USA, L. Wang, J.C. Rajapakse, K. Fukushima, S.Y. Lee, X. Yao (Eds.)
    • Hwang Y.S., Rim H.C. Decision tree decomposition-based complex feature selection for text chunking. Proceedings of the 9th international conference on neural information processing 2002 (ICONIP'02), vol. 5 2002, 2217-2222. IEEE, Piscataway, NJ, USA. L. Wang, J.C. Rajapakse, K. Fukushima, S.Y. Lee, X. Yao (Eds.).
    • (2002) Proceedings of the 9th international conference on neural information processing 2002 (ICONIP'02), vol. 5 , pp. 2217-2222
    • Hwang, Y.S.1    Rim, H.C.2
  • 49
    • 68649089765 scopus 로고    scopus 로고
    • Application of core vector machines for on-line voltage security assessment using a decision-tree-based feature selection algorithm
    • Mohammadi M., Gharehpetian G.B. Application of core vector machines for on-line voltage security assessment using a decision-tree-based feature selection algorithm. IET Generation Transmission Distribution 2009, 3(8):701.
    • (2009) IET Generation Transmission Distribution , vol.3 , Issue.8 , pp. 701
    • Mohammadi, M.1    Gharehpetian, G.B.2
  • 54
    • 0034159928 scopus 로고    scopus 로고
    • Generating concise and accurate classification rules for breast cancer diagnosis
    • Setiono R. Generating concise and accurate classification rules for breast cancer diagnosis. Artificial Intelligence in Medicine 2000, 18(3):205-219.
    • (2000) Artificial Intelligence in Medicine , vol.18 , Issue.3 , pp. 205-219
    • Setiono, R.1
  • 56
    • 28444491395 scopus 로고    scopus 로고
    • A novel information geometric approach to variable selection in mlp networks
    • Eleuteri A., Tagliaferri R., Milano L. A novel information geometric approach to variable selection in mlp networks. Neural Networks 2005, 18(10):1309-1318.
    • (2005) Neural Networks , vol.18 , Issue.10 , pp. 1309-1318
    • Eleuteri, A.1    Tagliaferri, R.2    Milano, L.3
  • 57
    • 0342378106 scopus 로고    scopus 로고
    • Neurolinear: from neural networks to oblique decision rules
    • Setiono R., Liu H. Neurolinear: from neural networks to oblique decision rules. Neurocomputing 1997, 17(1):1-24.
    • (1997) Neurocomputing , vol.17 , Issue.1 , pp. 1-24
    • Setiono, R.1    Liu, H.2
  • 58
    • 0034284315 scopus 로고    scopus 로고
    • Input selection based on an ensemble
    • van de Laar P. Input selection based on an ensemble. Neurocomputing 2000, 34(1-4):227-238.
    • (2000) Neurocomputing , vol.34 , Issue.1-4 , pp. 227-238
    • van de Laar, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.