-
2
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens J.A.K., Vandewalle J. Least squares support vector machine classifiers. Neural Processing Letters 1999, 9(3):293-300.
-
(1999)
Neural Processing Letters
, vol.9
, Issue.3
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
3
-
-
0037695279
-
-
World Scientific, Singapore
-
Suykens J.A.K., Van Gestel T., De Brabanter J., De Moor B., Vandewalle J. Least squares support vector machines 2002, World Scientific, Singapore.
-
(2002)
Least squares support vector machines
-
-
Suykens, J.A.K.1
Van Gestel, T.2
De Brabanter, J.3
De Moor, B.4
Vandewalle, J.5
-
4
-
-
0033569406
-
Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
-
Golub T.R., Slonim D.K., Tamayo P., Huard C., Gaasenbeek M., Mesirov J.P., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):531-537.
-
(1999)
Science
, vol.286
, Issue.5439
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamayo, P.3
Huard, C.4
Gaasenbeek, M.5
Mesirov, J.P.6
-
5
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
Furey T.S., Cristianini N., Duffy N., Bednarski D.W., Schummer M., Haussler D. Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 2000, 16(10):906-914.
-
(2000)
Bioinformatics
, vol.16
, Issue.10
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.W.4
Schummer, M.5
Haussler, D.6
-
6
-
-
85146422424
-
A practical approach to feature selection
-
Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA, ISBN: 1-5586-247-X, D. Sleeman, P. Edwards (Eds.)
-
Kira K., Rendell L.A. A practical approach to feature selection. Proceedings of the ninth international workshop on machine learning (ML92) 1992, 249-256. Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA, ISBN: 1-5586-247-X. D. Sleeman, P. Edwards (Eds.).
-
(1992)
Proceedings of the ninth international workshop on machine learning (ML92)
, pp. 249-256
-
-
Kira, K.1
Rendell, L.A.2
-
7
-
-
34247622378
-
Iterative RELIEF for feature weighting: algorithms, theories, and applications
-
Sun Y. Iterative RELIEF for feature weighting: algorithms, theories, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 2007, 29(6):1035-1051.
-
(2007)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.29
, Issue.6
, pp. 1035-1051
-
-
Sun, Y.1
-
8
-
-
85099479344
-
Learning with many irrelevant features
-
MIT Press, Cambridge, MA, USA, T. Dean, K. McKeown (Eds.)
-
Almuallim H., Dietterich T.G. Learning with many irrelevant features. Proceedings of the ninth national conference on artificial intelligence 1991, 547-552. MIT Press, Cambridge, MA, USA. T. Dean, K. McKeown (Eds.).
-
(1991)
Proceedings of the ninth national conference on artificial intelligence
, pp. 547-552
-
-
Almuallim, H.1
Dietterich, T.G.2
-
9
-
-
0031381525
-
Wrappers for feature subset selection
-
Kohavi R., John G.H. Wrappers for feature subset selection. Artificial Intelligence 1997, 97(1):273-324.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
11
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 2002, 46(1-3):389-422.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
12
-
-
0001001098
-
Feature selection for SVMs
-
MIT Press, Cambridge, MA, USA, T.K. Leen, T.G. Dietterich, V. Tresp (Eds.)
-
Weston J., Mukherjee S., Chapelle O., Pontil M., Poggio T., Vapnik V. Feature selection for SVMs. Advances in neural information processing systems 13 2000, 668-674. MIT Press, Cambridge, MA, USA. T.K. Leen, T.G. Dietterich, V. Tresp (Eds.).
-
(2000)
Advances in neural information processing systems 13
, pp. 668-674
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
14
-
-
3142615000
-
-
Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, WI, USA
-
Fung G., Mangasarian O.L. A feature selection Newton method for support vector machine classification. Tech. Rep. 02-03 2002, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, WI, USA. ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/02-03.ps.
-
(2002)
A feature selection Newton method for support vector machine classification. Tech. Rep. 02-03
-
-
Fung, G.1
Mangasarian, O.L.2
-
15
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum A.L., Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 1997, 97:245-271.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
16
-
-
84890520049
-
Use of the zero norm with linear models and kernel methods
-
Weston J., Elisseeff A., Schölkopf B., Tipping M. Use of the zero norm with linear models and kernel methods. Journal of Machine Learning Research 2003, 3:1439-1461.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseeff, A.2
Schölkopf, B.3
Tipping, M.4
-
17
-
-
0002709342
-
Feature selection via concave minimization and support vector machines
-
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, ISBN: 1-55860-556-8, J. Shavlik (Ed.)
-
Bradley P.S., Mangasarian O.L. Feature selection via concave minimization and support vector machines. Proceedings of the fifteenth international conference on machine learning (ICML) 1998, 82-90. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, ISBN: 1-55860-556-8. J. Shavlik (Ed.).
-
(1998)
Proceedings of the fifteenth international conference on machine learning (ICML)
, pp. 82-90
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
18
-
-
30044438683
-
Combined svm-based feature selection and classification
-
Neumann J., Schnörr C., Steidl G. Combined svm-based feature selection and classification. Machine Learning 2005, 61(1-3):129-150.
-
(2005)
Machine Learning
, vol.61
, Issue.1-3
, pp. 129-150
-
-
Neumann, J.1
Schnörr, C.2
Steidl, G.3
-
19
-
-
49549102637
-
Feature selection for nonlinear kernel support vector machines
-
ISBN: 0-7695-3033-8, A.K.H. Tung, Q. Zhu, N. Ramakrishnan, O.R. Zaane, Y. Shi, C.W. Clifton (Eds.)
-
Mangasarian O.L., Kou G. Feature selection for nonlinear kernel support vector machines. Proceedings of the Seventh IEEE International Conference on Data Mining Workshops. ICDMW 2007, 231-236. ISBN: 0-7695-3033-8. A.K.H. Tung, Q. Zhu, N. Ramakrishnan, O.R. Zaane, Y. Shi, C.W. Clifton (Eds.).
-
(2007)
Proceedings of the Seventh IEEE International Conference on Data Mining Workshops. ICDMW
, pp. 231-236
-
-
Mangasarian, O.L.1
Kou, G.2
-
20
-
-
77956551904
-
Learning sparse svm for feature selection on very high dimensional datasets
-
Omnipress, Madison, WI, USA, J. Fürnkranz, T. Joachims (Eds.)
-
Tan M., Wang L., Tsang I.W.I. Learning sparse svm for feature selection on very high dimensional datasets. Proceedings of the 27th international conference on machine learning (ICML) 2010, 1047-1054. Omnipress, Madison, WI, USA. J. Fürnkranz, T. Joachims (Eds.).
-
(2010)
Proceedings of the 27th international conference on machine learning (ICML)
, pp. 1047-1054
-
-
Tan, M.1
Wang, L.2
Tsang, I.W.I.3
-
21
-
-
77958106713
-
Simultaneous feature selection and classification using kernel-penalized support vector machines
-
Maldonado S., Weber R., Basak J. Simultaneous feature selection and classification using kernel-penalized support vector machines. Information Sciences 2011, 181(1):115-128.
-
(2011)
Information Sciences
, vol.181
, Issue.1
, pp. 115-128
-
-
Maldonado, S.1
Weber, R.2
Basak, J.3
-
22
-
-
33644921465
-
Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach
-
Etchells T.A., Lisboa P.J.G. Orthogonal search-based rule extraction (OSRE) for trained neural networks: a practical and efficient approach. IEEE Transactions on Neural Networks 2006, 17(2):374-384.
-
(2006)
IEEE Transactions on Neural Networks
, vol.17
, Issue.2
, pp. 374-384
-
-
Etchells, T.A.1
Lisboa, P.J.G.2
-
23
-
-
38049069355
-
Rule extraction from support vector machines: an overview of issues and application in credit scoring
-
J. Diederich (Ed.)
-
Martens D., Huysmans J., Setiono R., Vanthienen J., Baesens B. Rule extraction from support vector machines: an overview of issues and application in credit scoring. Rule extraction from support vector machines; vol. 80 of studies in computational intelligence 2008, 33-63. J. Diederich (Ed.).
-
(2008)
Rule extraction from support vector machines; vol. 80 of studies in computational intelligence
, pp. 33-63
-
-
Martens, D.1
Huysmans, J.2
Setiono, R.3
Vanthienen, J.4
Baesens, B.5
-
25
-
-
27644538407
-
-
Springer, Heidelberg, GE
-
Pelckmans K., Goethals I., De Brabanter J., Suykens J.A.K., De Moor B. Componentwise least squares support vector machines chap. Support vector machines: theory and applications 2005, 77-98. Springer, Heidelberg, GE.
-
(2005)
Componentwise least squares support vector machines chap. Support vector machines: theory and applications
, pp. 77-98
-
-
Pelckmans, K.1
Goethals, I.2
De Brabanter, J.3
Suykens, J.A.K.4
De Moor, B.5
-
26
-
-
0002081773
-
-
MIT Press, Cambridge, MA, USA
-
Stitson M., Gammerman A., Vapnik V., Vovk V., Watkins C., Weston J. Support vector regression with ANOVA decomposition kernels; chap. Advances in kernel methods: support vector learning 1999, 285-291. MIT Press, Cambridge, MA, USA.
-
(1999)
Support vector regression with ANOVA decomposition kernels; chap. Advances in kernel methods: support vector learning
, pp. 285-291
-
-
Stitson, M.1
Gammerman, A.2
Vapnik, V.3
Vovk, V.4
Watkins, C.5
Weston, J.6
-
27
-
-
67651009834
-
-
Springer, New York, USA
-
Steyerberg E. Clinical prediction models: a practical approach to development, validation and updating, statistics for biology and health 2009, Springer, New York, USA.
-
(2009)
Clinical prediction models: a practical approach to development, validation and updating, statistics for biology and health
-
-
Steyerberg, E.1
-
28
-
-
0003732572
-
Regression modeling strategies. With applications to linear models logistic regression and survival analysis
-
Springer, New York, USA
-
Harrell F. Regression modeling strategies. With applications to linear models logistic regression and survival analysis. Springer Series in Statistics 2001, Springer, New York, USA.
-
(2001)
Springer Series in Statistics
-
-
Harrell, F.1
-
29
-
-
84874257732
-
Better subset regression using the nonnegative garrote
-
Breiman L. Better subset regression using the nonnegative garrote. Technometrics 1995, 37(4):373-384.
-
(1995)
Technometrics
, vol.37
, Issue.4
, pp. 373-384
-
-
Breiman, L.1
-
30
-
-
33847350805
-
Component selection and smoothing in multivariate nonparametric regression
-
Lin Y., Zhang H.H. Component selection and smoothing in multivariate nonparametric regression. Annals of Statistics 2006, 34(5):2272-2297.
-
(2006)
Annals of Statistics
, vol.34
, Issue.5
, pp. 2272-2297
-
-
Lin, Y.1
Zhang, H.H.2
-
31
-
-
70350092487
-
Sparse additive models
-
Ravikumar P., Lafferty J., Liu H., Wasserman L. Sparse additive models. Journal of the Royal Statistical Society, Series B: Statistical Methodology 2009, 71(5):1009-1030.
-
(2009)
Journal of the Royal Statistical Society, Series B: Statistical Methodology
, vol.71
, Issue.5
, pp. 1009-1030
-
-
Ravikumar, P.1
Lafferty, J.2
Liu, H.3
Wasserman, L.4
-
32
-
-
0036643063
-
Structural modelling with sparse kernels
-
Gunn S.R., Kandola J.S. Structural modelling with sparse kernels. Machine Learning 2002, 48:137-163.
-
(2002)
Machine Learning
, vol.48
, pp. 137-163
-
-
Gunn, S.R.1
Kandola, J.S.2
-
33
-
-
0001500115
-
Functions of positive and negative type and their connection with the theory of integral equations
-
Mercer J. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society A 1909, 209:415-446.
-
(1909)
Philosophical Transactions of the Royal Society A
, vol.209
, pp. 415-446
-
-
Mercer, J.1
-
36
-
-
0031015557
-
The lasso method for variable selection in the Cox model
-
Tibshirani R. The lasso method for variable selection in the Cox model. Statistics in Medicine 1997, 16(4):267-288.
-
(1997)
Statistics in Medicine
, vol.16
, Issue.4
, pp. 267-288
-
-
Tibshirani, R.1
-
38
-
-
77949773681
-
Coupled simulated annealing
-
Xavier de Souza S., Suykens J.A.K., Vandewalle J., Bolle D. Coupled simulated annealing. IEEE Transactions on Systems, Man, and Cybernetics: Part B 2010, 40(2):320-335.
-
(2010)
IEEE Transactions on Systems, Man, and Cybernetics: Part B
, vol.40
, Issue.2
, pp. 320-335
-
-
Xavier de Souza, S.1
Suykens, J.A.K.2
Vandewalle, J.3
Bolle, D.4
-
39
-
-
0023710206
-
Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
-
DeLong E.R., DeLong D.M., Clarke-Pearson D.L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988, 44(3):837-845.
-
(1988)
Biometrics
, vol.44
, Issue.3
, pp. 837-845
-
-
DeLong, E.R.1
DeLong, D.M.2
Clarke-Pearson, D.L.3
-
40
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
MIT Press, Cambridge, MA, USA, A.J. Smola, P. Bartlett, B. Schoelkopf, D. Schuurmans (Eds.)
-
Platt J.C. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers 1999, 61-74. MIT Press, Cambridge, MA, USA. A.J. Smola, P. Bartlett, B. Schoelkopf, D. Schuurmans (Eds.).
-
(1999)
Advances in large margin classifiers
, pp. 61-74
-
-
Platt, J.C.1
-
42
-
-
67649586444
-
Feature ranking by weighting and ISE criterion of nonparametric density estimation
-
Wang X., Wang S. Feature ranking by weighting and ISE criterion of nonparametric density estimation. Journal of Applied Sciences 2009, 9(6):1014-1024.
-
(2009)
Journal of Applied Sciences
, vol.9
, Issue.6
, pp. 1014-1024
-
-
Wang, X.1
Wang, S.2
-
44
-
-
84992726552
-
Estimating attributes: analysis and extensions of RELIEF
-
Springer-Verlag New York, Inc., Secaucus, NJ, USA, ISBN: 3-540-57868-4, F. Bergadano, L. De Raedt (Eds.)
-
Kononenko I. Estimating attributes: analysis and extensions of RELIEF. Proceedings of the European conference on machine learning (ECML-94) 1994, 171-182. Springer-Verlag New York, Inc., Secaucus, NJ, USA, ISBN: 3-540-57868-4. F. Bergadano, L. De Raedt (Eds.).
-
(1994)
Proceedings of the European conference on machine learning (ECML-94)
, pp. 171-182
-
-
Kononenko, I.1
-
48
-
-
84971673630
-
Decision tree decomposition-based complex feature selection for text chunking
-
IEEE, Piscataway, NJ, USA, L. Wang, J.C. Rajapakse, K. Fukushima, S.Y. Lee, X. Yao (Eds.)
-
Hwang Y.S., Rim H.C. Decision tree decomposition-based complex feature selection for text chunking. Proceedings of the 9th international conference on neural information processing 2002 (ICONIP'02), vol. 5 2002, 2217-2222. IEEE, Piscataway, NJ, USA. L. Wang, J.C. Rajapakse, K. Fukushima, S.Y. Lee, X. Yao (Eds.).
-
(2002)
Proceedings of the 9th international conference on neural information processing 2002 (ICONIP'02), vol. 5
, pp. 2217-2222
-
-
Hwang, Y.S.1
Rim, H.C.2
-
49
-
-
68649089765
-
Application of core vector machines for on-line voltage security assessment using a decision-tree-based feature selection algorithm
-
Mohammadi M., Gharehpetian G.B. Application of core vector machines for on-line voltage security assessment using a decision-tree-based feature selection algorithm. IET Generation Transmission Distribution 2009, 3(8):701.
-
(2009)
IET Generation Transmission Distribution
, vol.3
, Issue.8
, pp. 701
-
-
Mohammadi, M.1
Gharehpetian, G.B.2
-
50
-
-
0003500248
-
-
Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA
-
Quinlan J.R. C4.5: programs for machine learning 1993, Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA.
-
(1993)
C4.5: programs for machine learning
-
-
Quinlan, J.R.1
-
52
-
-
0003722376
-
-
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
-
Goldberg D.E. Genetic algorithms in search, optimization and machine learning 1989, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
-
(1989)
Genetic algorithms in search, optimization and machine learning
-
-
Goldberg, D.E.1
-
54
-
-
0034159928
-
Generating concise and accurate classification rules for breast cancer diagnosis
-
Setiono R. Generating concise and accurate classification rules for breast cancer diagnosis. Artificial Intelligence in Medicine 2000, 18(3):205-219.
-
(2000)
Artificial Intelligence in Medicine
, vol.18
, Issue.3
, pp. 205-219
-
-
Setiono, R.1
-
56
-
-
28444491395
-
A novel information geometric approach to variable selection in mlp networks
-
Eleuteri A., Tagliaferri R., Milano L. A novel information geometric approach to variable selection in mlp networks. Neural Networks 2005, 18(10):1309-1318.
-
(2005)
Neural Networks
, vol.18
, Issue.10
, pp. 1309-1318
-
-
Eleuteri, A.1
Tagliaferri, R.2
Milano, L.3
-
57
-
-
0342378106
-
Neurolinear: from neural networks to oblique decision rules
-
Setiono R., Liu H. Neurolinear: from neural networks to oblique decision rules. Neurocomputing 1997, 17(1):1-24.
-
(1997)
Neurocomputing
, vol.17
, Issue.1
, pp. 1-24
-
-
Setiono, R.1
Liu, H.2
-
58
-
-
0034284315
-
Input selection based on an ensemble
-
van de Laar P. Input selection based on an ensemble. Neurocomputing 2000, 34(1-4):227-238.
-
(2000)
Neurocomputing
, vol.34
, Issue.1-4
, pp. 227-238
-
-
van de Laar, P.1
|