-
1
-
-
0002709342
-
Feature selection via concave minimization and support vector machines
-
J. Shavlik, editor, San Francisco, California, Morgan Kaufmann
-
P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector machines. In J. Shavlik, editor, Proceedings 15th International Conference on Machine Learning, pages 82-90, San Francisco, California, 1998. Morgan Kaufmann. ftp://ftp.cs.wisc.edu/math-prog/ tech-reports/98-03.ps.
-
(1998)
Proceedings 15th International Conference on Machine Learning
, pp. 82-90
-
-
Bradley, P.S.1
Mangasarian, O.L.2
-
2
-
-
34250791107
-
Optimization methods in massive datasets
-
J. Abello, P. M. Pardalos, and M. G. C. Resende, editors, Dordrecht, Netherlands, Kluwer Academic Publishers
-
P. S. Bradley, O. L. Mangasarian, and D. R. Musicant. Optimization methods in massive datasets. In J. Abello, P. M. Pardalos, and M. G. C. Resende, editors, Handbook of Massive Datasets, pages 439-472, Dordrecht, Netherlands, 2002. Kluwer Academic Publishers. ftp://ftp.cs.wisc.edu/pub/dmi/ tech-reports/99-01.ps.
-
(2002)
Handbook of Massive Datasets
, pp. 439-472
-
-
Bradley, P.S.1
Mangasarian, O.L.2
Musicant, D.R.3
-
5
-
-
10844295776
-
Feature subset selection for support vector machines by incremental regularized risk minimization
-
H. Fröhlich and A. Zell. Feature subset selection for support vector machines by incremental regularized risk minimization. In International Joint Conference on Neural Networks (IJCNN), volume 3, pages 2041-2046, 2004.
-
(2004)
International Joint Conference on Neural Networks (IJCNN)
, vol.3
, pp. 2041-2046
-
-
Fröhlich, H.1
Zell, A.2
-
6
-
-
3543109140
-
A feature selection Newton method for support vector machine classification
-
July
-
G. Fung and O. L. Mangasarian. A feature selection Newton method for support vector machine classification. Computational Optimization and Applications, 28(2):185-202, July 2004. ftp://ftp.cs.wisc.edu/pub/dmi/tech- reports/02-03.ps.
-
(2004)
Computational Optimization and Applications
, vol.28
, Issue.2
, pp. 185-202
-
-
Fung, G.1
Mangasarian, O.L.2
-
7
-
-
27744569713
-
Bayesian approach to feature selection and parameter tuning for support vector machine classifiers
-
C. Gold, A. Holub, and P. Sollich. Bayesian approach to feature selection and parameter tuning for support vector machine classifiers. Neural Networks, 18(5-6):693-701, 2005.
-
(2005)
Neural Networks
, vol.18
, Issue.5-6
, pp. 693-701
-
-
Gold, C.1
Holub, A.2
Sollich, P.3
-
8
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3):389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
9
-
-
11844277921
-
-
ILOG, Incline Village, Nevada. ILOG CPLEX 9.0 User's Manual, 2003. http://www.ilog.com/products/cplex/.
-
(2003)
ILOG CPLEX 9.0 User's Manual
-
-
-
10
-
-
0025554389
-
Experience with the condor distributed batch system
-
Hunstville, AL, October, IEEE Compter Society Press
-
M. Litzkow and M. Livny. Experience with the condor distributed batch system. In Proceedings IEEE Workshop on Experimental Distributed Systems, pages 97-101, Hunstville, AL, October 1990. IEEE Compter Society Press.
-
(1990)
Proceedings IEEE Workshop on Experimental Distributed Systems
, pp. 97-101
-
-
Litzkow, M.1
Livny, M.2
-
11
-
-
0001777975
-
Generalized support vector machines
-
A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
-
O. L. Mangasarian. Generalized support vector machines. In A. Smola, P. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 135-146, Cambridge, MA, 2000. MIT Press. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/98-14.ps.
-
(2000)
Advances in Large Margin Classifiers
, pp. 135-146
-
-
Mangasarian, O.L.1
-
12
-
-
0003977889
-
-
MATLAB, The MathWorks, Inc, Natick, MA 01760
-
MATLAB. User's Guide. The MathWorks, Inc., Natick, MA 01760, 1994-2006. http://www.mathworks.com.
-
(1994)
User's Guide
-
-
-
14
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
M. Robnik-Šikonja and I. Kononenko. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning, 53(1-2):23-69, 2003.
-
(2003)
Machine Learning
, vol.53
, Issue.1-2
, pp. 23-69
-
-
Robnik-Šikonja, M.1
Kononenko, I.2
-
16
-
-
33750999683
-
Fast gaussian process regression using kd-trees
-
Y. Shen, A. Y. Ng, and M. Seeger. Fast gaussian process regression using kd-trees. In NIPS 18, 2006. http://ai.stanford.edu/∼ang/papers/ nips05-fastgaussianprocess.pdf.
-
(2006)
NIPS 18
-
-
Shen, Y.1
Ng, A.Y.2
Seeger, M.3
-
19
-
-
0001001098
-
Feature selection for SVMs
-
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for SVMs. In NIPS, pages 668-674, 2000.
-
(2000)
NIPS
, pp. 668-674
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
-
20
-
-
33746149382
-
Variable selection for support vector machines via smoothing spline ANOVA
-
H. H. Zhang. Variable selection for support vector machines via smoothing spline ANOVA. Statistica Sinica, 16(2):659-674, 2006.
-
(2006)
Statistica Sinica
, vol.16
, Issue.2
, pp. 659-674
-
-
Zhang, H.H.1
|