메뉴 건너뛰기




Volumn 39, Issue 2, 2014, Pages 45-52

Voltage-gated calcium channels function as Ca2+-activated signaling receptors

Author keywords

Cardiac channel; Cardiac contraction; Ryanodine receptor; RyR2; SNAREs; Synaptotagmin; Syntaxin; Transmitter release

Indexed keywords

CALCIUM ION; SYNAPTOSOMAL ASSOCIATED PROTEIN 25; SYNAPTOTAGMIN I; SYNTAXIN 1A; VOLTAGE GATED CALCIUM CHANNEL;

EID: 84892864723     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2013.12.005     Document Type: Review
Times cited : (33)

References (85)
  • 1
    • 0015856482 scopus 로고
    • Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling
    • Schneider M.F., Chandler W.K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature 1973, 242:244-246.
    • (1973) Nature , vol.242 , pp. 244-246
    • Schneider, M.F.1    Chandler, W.K.2
  • 2
    • 0024458734 scopus 로고
    • Structure, function, and regulation of the skeletal muscle dihydropyridine receptor
    • Beam K.G., et al. Structure, function, and regulation of the skeletal muscle dihydropyridine receptor. Ann. N. Y. Acad. Sci. 1989, 560:127-137.
    • (1989) Ann. N. Y. Acad. Sci. , vol.560 , pp. 127-137
    • Beam, K.G.1
  • 3
    • 0033618408 scopus 로고    scopus 로고
    • The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the bi-directional coupling with the ryanodine receptor
    • Grabner M., et al. The II-III loop of the skeletal muscle dihydropyridine receptor is responsible for the bi-directional coupling with the ryanodine receptor. J. Biol. Chem. 1999, 274:21913-21919.
    • (1999) J. Biol. Chem. , vol.274 , pp. 21913-21919
    • Grabner, M.1
  • 4
    • 52049098700 scopus 로고    scopus 로고
    • Calcium channel regulation and presynaptic plasticity
    • Catterall W.A., Few A.P. Calcium channel regulation and presynaptic plasticity. Neuron 2008, 59:882-901.
    • (2008) Neuron , vol.59 , pp. 882-901
    • Catterall, W.A.1    Few, A.P.2
  • 5
    • 78049359992 scopus 로고    scopus 로고
    • Signaling complexes of voltage-gated sodium and calcium channels
    • Catterall W.A. Signaling complexes of voltage-gated sodium and calcium channels. Neurosci. Lett. 2010, 486:107-116.
    • (2010) Neurosci. Lett. , vol.486 , pp. 107-116
    • Catterall, W.A.1
  • 6
    • 0035013909 scopus 로고    scopus 로고
    • Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism
    • Atlas D. Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: ramifications for the secretion mechanism. J. Neurochem. 2001, 77:972-985.
    • (2001) J. Neurochem. , vol.77 , pp. 972-985
    • Atlas, D.1
  • 7
    • 0035527304 scopus 로고    scopus 로고
    • 2+ sensor of fast neurotransmitter release
    • 2+ sensor of fast neurotransmitter release. Cell. Mol. Neurobiol. 2001, 21:717-731.
    • (2001) Cell. Mol. Neurobiol. , vol.21 , pp. 717-731
    • Atlas, D.1
  • 8
    • 77955657644 scopus 로고    scopus 로고
    • Signaling role of the voltage-gated calcium channel as the molecular on/off-switch of secretion
    • Atlas D. Signaling role of the voltage-gated calcium channel as the molecular on/off-switch of secretion. Cell. Signal. 2010, 22:1597-1603.
    • (2010) Cell. Signal. , vol.22 , pp. 1597-1603
    • Atlas, D.1
  • 9
    • 84878238928 scopus 로고    scopus 로고
    • The voltage-gated calcium channel functions as the molecular switch of synaptic transmission
    • Atlas D. The voltage-gated calcium channel functions as the molecular switch of synaptic transmission. Annu. Rev. Biochem. 2013, 82:607-635.
    • (2013) Annu. Rev. Biochem. , vol.82 , pp. 607-635
    • Atlas, D.1
  • 10
    • 84870477743 scopus 로고    scopus 로고
    • Voltage-driven Ca(2+) binding at the L-type Ca(2+) channel triggers cardiac excitation-contraction coupling prior to Ca(2+) influx
    • Gez L.S., et al. Voltage-driven Ca(2+) binding at the L-type Ca(2+) channel triggers cardiac excitation-contraction coupling prior to Ca(2+) influx. Biochemistry 2012, 51:9658-9666.
    • (2012) Biochemistry , vol.51 , pp. 9658-9666
    • Gez, L.S.1
  • 12
    • 0038050215 scopus 로고    scopus 로고
    • Regulated exocytosis and SNARE function (Review)
    • Sollner T.H. Regulated exocytosis and SNARE function (Review). Mol. Membr. Biol. 2003, 20:209-220.
    • (2003) Mol. Membr. Biol. , vol.20 , pp. 209-220
    • Sollner, T.H.1
  • 13
    • 84867295592 scopus 로고    scopus 로고
    • Molecular machines governing exocytosis of synaptic vesicles
    • Jahn R., Fasshauer D. Molecular machines governing exocytosis of synaptic vesicles. Nature 2012, 490:201-207.
    • (2012) Nature , vol.490 , pp. 201-207
    • Jahn, R.1    Fasshauer, D.2
  • 15
    • 0038170314 scopus 로고    scopus 로고
    • Permeation and selectivity in calcium channels
    • Sather W.A., McCleskey E.W. Permeation and selectivity in calcium channels. Annu. Rev. Physiol. 2003, 65:133-159.
    • (2003) Annu. Rev. Physiol. , vol.65 , pp. 133-159
    • Sather, W.A.1    McCleskey, E.W.2
  • 16
    • 0037630703 scopus 로고    scopus 로고
    • Regulation of presynaptic calcium channels by synaptic proteins
    • Zamponi G.W. Regulation of presynaptic calcium channels by synaptic proteins. J. Pharmacol. Sci. 2003, 92:79-83.
    • (2003) J. Pharmacol. Sci. , vol.92 , pp. 79-83
    • Zamponi, G.W.1
  • 17
    • 0030804808 scopus 로고    scopus 로고
    • The calcium channel and the organization of the presynaptic transmitter release face
    • Stanley E.F. The calcium channel and the organization of the presynaptic transmitter release face. Trends Neurosci. 1997, 20:404-409.
    • (1997) Trends Neurosci. , vol.20 , pp. 404-409
    • Stanley, E.F.1
  • 18
    • 82755171884 scopus 로고    scopus 로고
    • Molecular determinants of CaV2.1 channel regulation by calcium-binding protein-1
    • Few A.P., et al. Molecular determinants of CaV2.1 channel regulation by calcium-binding protein-1. J. Biol. Chem. 2011, 286:41917-41923.
    • (2011) J. Biol. Chem. , vol.286 , pp. 41917-41923
    • Few, A.P.1
  • 19
    • 0033524419 scopus 로고    scopus 로고
    • 2+ channel is functionally coupled to the exocytotic machinery
    • 2+ channel is functionally coupled to the exocytotic machinery. Proc. Natl. Acad. Sci. U.S.A. 1999, 96:248-253.
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 248-253
    • Wiser, O.1
  • 20
    • 28444493051 scopus 로고    scopus 로고
    • Molecular identification and reconstitution of depolarization-induced exocytosis monitored by membrane capacitance
    • Cohen R., et al. Molecular identification and reconstitution of depolarization-induced exocytosis monitored by membrane capacitance. Biophys. J. 2005, 89:4364-4373.
    • (2005) Biophys. J. , vol.89 , pp. 4364-4373
    • Cohen, R.1
  • 21
    • 44349134069 scopus 로고    scopus 로고
    • Depolarization-evoked secretion requires two vicinal transmembrane cysteines of syntaxin 1A
    • Cohen R., et al. Depolarization-evoked secretion requires two vicinal transmembrane cysteines of syntaxin 1A. PLoS ONE 2007, 2:e1273. 10.1371/journal.pone.0001273.
    • (2007) PLoS ONE , vol.2
    • Cohen, R.1
  • 22
    • 78650817502 scopus 로고    scopus 로고
    • Control of depolarization-evoked presynaptic neurotransmitter release by Cav2.1 calcium channel: old story, new insights
    • Weiss N. Control of depolarization-evoked presynaptic neurotransmitter release by Cav2.1 calcium channel: old story, new insights. Channels 2010, 4:431-433.
    • (2010) Channels , vol.4 , pp. 431-433
    • Weiss, N.1
  • 23
    • 35348946444 scopus 로고    scopus 로고
    • + channels: tuning beta-cell excitability with syntaxin-1A and other exocytotic proteins
    • + channels: tuning beta-cell excitability with syntaxin-1A and other exocytotic proteins. Endocr. Rev. 2007, 28:653-663.
    • (2007) Endocr. Rev. , vol.28 , pp. 653-663
    • Leung, Y.M.1
  • 24
    • 84879745707 scopus 로고    scopus 로고
    • Exocyst sec5 regulates exocytosis of newcomer insulin granules underlying biphasic insulin secretion
    • Xie L., et al. Exocyst sec5 regulates exocytosis of newcomer insulin granules underlying biphasic insulin secretion. PLoS ONE 2013, 8:e67561. 10.1371/journal.pone.0067561.
    • (2013) PLoS ONE , vol.8
    • Xie, L.1
  • 25
    • 0037171801 scopus 로고    scopus 로고
    • RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca(2+) channels
    • Hibino H., et al. RIM binding proteins (RBPs) couple Rab3-interacting molecules (RIMs) to voltage-gated Ca(2+) channels. Neuron 2002, 34:411-423.
    • (2002) Neuron , vol.34 , pp. 411-423
    • Hibino, H.1
  • 26
    • 0034733706 scopus 로고    scopus 로고
    • The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins
    • Wang Y., et al. The RIM/NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of Src homology 3 domain proteins. J. Biol. Chem. 2000, 275:20033-20044.
    • (2000) J. Biol. Chem. , vol.275 , pp. 20033-20044
    • Wang, Y.1
  • 27
    • 0035030935 scopus 로고    scopus 로고
    • Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming
    • Betz A., et al. Functional interaction of the active zone proteins Munc13-1 and RIM1 in synaptic vesicle priming. Neuron 2001, 30:183-196.
    • (2001) Neuron , vol.30 , pp. 183-196
    • Betz, A.1
  • 29
    • 84878612423 scopus 로고    scopus 로고
    • Cryo-electron tomography reveals a critical role of RIM1alpha in synaptic vesicle tethering
    • Fernandez-Busnadiego R., et al. Cryo-electron tomography reveals a critical role of RIM1alpha in synaptic vesicle tethering. J. Cell Biol. 2013, 201:725-740.
    • (2013) J. Cell Biol. , vol.201 , pp. 725-740
    • Fernandez-Busnadiego, R.1
  • 30
    • 75749090069 scopus 로고    scopus 로고
    • Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography
    • Fernandez-Busnadiego R., et al. Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J. Cell Biol. 2010, 188:145-156.
    • (2010) J. Cell Biol. , vol.188 , pp. 145-156
    • Fernandez-Busnadiego, R.1
  • 31
    • 51349162914 scopus 로고    scopus 로고
    • Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density
    • Gracheva E.O., et al. Direct interactions between C. elegans RAB-3 and Rim provide a mechanism to target vesicles to the presynaptic density. Neurosci. Lett. 2008, 444:137-142.
    • (2008) Neurosci. Lett. , vol.444 , pp. 137-142
    • Gracheva, E.O.1
  • 32
    • 84878976407 scopus 로고    scopus 로고
    • Synaptic vesicle capture by CaV2.2 calcium channels
    • Wong F.K., et al. Synaptic vesicle capture by CaV2.2 calcium channels. Front. Cell. Neurosci. 2013, 7:101. 10.3389/fncel.2013.00101.
    • (2013) Front. Cell. Neurosci. , vol.7 , pp. 101
    • Wong, F.K.1
  • 33
    • 0024002576 scopus 로고
    • The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse
    • Landis D.M., et al. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron 1988, 1:201-209.
    • (1988) Neuron , vol.1 , pp. 201-209
    • Landis, D.M.1
  • 34
    • 0024595352 scopus 로고
    • The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1
    • Hirokawa N., et al. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J. Cell Biol. 1989, 108:111-126.
    • (1989) J. Cell Biol. , vol.108 , pp. 111-126
    • Hirokawa, N.1
  • 35
    • 34347332448 scopus 로고    scopus 로고
    • Three-dimensional architecture of presynaptic terminal cytomatrix
    • Siksou L., et al. Three-dimensional architecture of presynaptic terminal cytomatrix. J. Neurosci. 2007, 27:6868-6877.
    • (2007) J. Neurosci. , vol.27 , pp. 6868-6877
    • Siksou, L.1
  • 36
    • 14844330221 scopus 로고    scopus 로고
    • Structural studies by electron tomography: from cells to molecules
    • Lucic V., et al. Structural studies by electron tomography: from cells to molecules. Annu. Rev. Biochem. 2005, 74:833-865.
    • (2005) Annu. Rev. Biochem. , vol.74 , pp. 833-865
    • Lucic, V.1
  • 37
    • 85006142608 scopus 로고
    • Studies of the triad: I. Structure of the junction in frog twitch fibers
    • Franzini-Armstrong C. Studies of the triad: I. Structure of the junction in frog twitch fibers. J. Cell Biol. 1970, 47:488-499.
    • (1970) J. Cell Biol. , vol.47 , pp. 488-499
    • Franzini-Armstrong, C.1
  • 38
    • 0023723765 scopus 로고
    • Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA
    • Tanabe T., et al. Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 1988, 336:134-139.
    • (1988) Nature , vol.336 , pp. 134-139
    • Tanabe, T.1
  • 39
    • 33644954154 scopus 로고    scopus 로고
    • 2+ channel is sufficient to mediate depolarization-induced exocytosis
    • 2+ channel is sufficient to mediate depolarization-induced exocytosis. J. Neurochem. 2006, 97:116-127.
    • (2006) J. Neurochem. , vol.97 , pp. 116-127
    • Lerner, I.1
  • 40
    • 58849110961 scopus 로고    scopus 로고
    • The voltage-gated Ca(2+) channel is the Ca(2+) sensor protein of secretion
    • Hagalili Y., et al. The voltage-gated Ca(2+) channel is the Ca(2+) sensor protein of secretion. Biochemistry 2008, 47:13822-13830.
    • (2008) Biochemistry , vol.47 , pp. 13822-13830
    • Hagalili, Y.1
  • 41
    • 55749104080 scopus 로고    scopus 로고
    • 2+-channel modify fusion-pore kinetics
    • 2+-channel modify fusion-pore kinetics. Channels 2007, 1:377-386.
    • (2007) Channels , vol.1 , pp. 377-386
    • Marom, M.1
  • 42
    • 84755161740 scopus 로고    scopus 로고
    • Simulations of calcium channel block by trivalent cations: Gd(3+) competes with permeant ions for the selectivity filter
    • Malasics A., et al. Simulations of calcium channel block by trivalent cations: Gd(3+) competes with permeant ions for the selectivity filter. Biochim. Biophys. Acta 2010, 1798:2013-2021.
    • (2010) Biochim. Biophys. Acta , vol.1798 , pp. 2013-2021
    • Malasics, A.1
  • 43
    • 84892370435 scopus 로고    scopus 로고
    • Structural basis for Ca selectivity of a voltage-gated calcium channel
    • Tang L., et al. Structural basis for Ca selectivity of a voltage-gated calcium channel. Nature 2013, 10.1038/nature12775.
    • (2013) Nature
    • Tang, L.1
  • 44
    • 37249015403 scopus 로고    scopus 로고
    • 2+ sensor protein of stimulus-secretion coupling in pancreatic beta cells
    • 2+ sensor protein of stimulus-secretion coupling in pancreatic beta cells. Biochemistry 2007, 46:14461-14467.
    • (2007) Biochemistry , vol.46 , pp. 14461-14467
    • Trus, M.1
  • 45
    • 33644684859 scopus 로고    scopus 로고
    • Structural determinants of L-type channel activation in segment IIS6 revealed by a retinal disorder
    • Hohaus A., et al. Structural determinants of L-type channel activation in segment IIS6 revealed by a retinal disorder. J. Biol. Chem. 2005, 280:38471-38477.
    • (2005) J. Biol. Chem. , vol.280 , pp. 38471-38477
    • Hohaus, A.1
  • 46
    • 52549098624 scopus 로고    scopus 로고
    • Membrane fusion: SNAREs and regulation
    • Malsam J., et al. Membrane fusion: SNAREs and regulation. Cell. Mol. Life Sci. 2008, 65:2814-2832.
    • (2008) Cell. Mol. Life Sci. , vol.65 , pp. 2814-2832
    • Malsam, J.1
  • 47
    • 58849092285 scopus 로고    scopus 로고
    • Membrane fusion: grappling with SNARE and SM proteins
    • Sudhof T.C., Rothman J.E. Membrane fusion: grappling with SNARE and SM proteins. Science 2009, 323:474-477.
    • (2009) Science , vol.323 , pp. 474-477
    • Sudhof, T.C.1    Rothman, J.E.2
  • 48
    • 0028880456 scopus 로고
    • Complexins: cytosolic proteins that regulate SNAP receptor function
    • McMahon H.T., et al. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 1995, 83:111-119.
    • (1995) Cell , vol.83 , pp. 111-119
    • McMahon, H.T.1
  • 49
    • 46449093538 scopus 로고    scopus 로고
    • How does synaptotagmin trigger neurotransmitter releaseα
    • Chapman E.R. How does synaptotagmin trigger neurotransmitter releaseα. Annu. Rev. Biochem. 2008, 77:615-641.
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 615-641
    • Chapman, E.R.1
  • 50
    • 34249933061 scopus 로고    scopus 로고
    • How synaptotagmin promotes membrane fusion
    • Martens S., et al. How synaptotagmin promotes membrane fusion. Science 2007, 316:1205-1208.
    • (2007) Science , vol.316 , pp. 1205-1208
    • Martens, S.1
  • 51
    • 33746319639 scopus 로고    scopus 로고
    • A clamping mechanism involved in SNARE-dependent exocytosis
    • Giraudo C.G., et al. A clamping mechanism involved in SNARE-dependent exocytosis. Science 2006, 313:676-680.
    • (2006) Science , vol.313 , pp. 676-680
    • Giraudo, C.G.1
  • 53
    • 33748605056 scopus 로고    scopus 로고
    • A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis
    • Tang J., et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 2006, 126:1175-1187.
    • (2006) Cell , vol.126 , pp. 1175-1187
    • Tang, J.1
  • 54
    • 84863120538 scopus 로고    scopus 로고
    • 2+ triggering of synaptic exocytosis
    • 2+ triggering of synaptic exocytosis. J. Neurosci. 2012, 32:2877-2885.
    • (2012) J. Neurosci. , vol.32 , pp. 2877-2885
    • Kaeser-Woo, Y.J.1
  • 55
    • 84883308384 scopus 로고    scopus 로고
    • Subtle interplay between synaptotagmin and complexin binding to the SNARE complex
    • Xu J., et al. Subtle interplay between synaptotagmin and complexin binding to the SNARE complex. J. Mol. Biol. 2013, 425:3461-3475.
    • (2013) J. Mol. Biol. , vol.425 , pp. 3461-3475
    • Xu, J.1
  • 56
    • 0031466995 scopus 로고    scopus 로고
    • Direct visualization of the translocation of the gamma-subspecies of protein kinase C in living cells using fusion proteins with green fluorescent protein
    • Sakai N., et al. Direct visualization of the translocation of the gamma-subspecies of protein kinase C in living cells using fusion proteins with green fluorescent protein. J. Cell Biol. 1997, 139:1465-1476.
    • (1997) J. Cell Biol. , vol.139 , pp. 1465-1476
    • Sakai, N.1
  • 57
    • 0037190640 scopus 로고    scopus 로고
    • 2+-controlled competitive diacylglycerol binding of protein kinase C isoenzymes in living cells
    • 2+-controlled competitive diacylglycerol binding of protein kinase C isoenzymes in living cells. J. Cell Biol. 2002, 159:291-302.
    • (2002) J. Cell Biol. , vol.159 , pp. 291-302
    • Lenz, J.C.1
  • 58
    • 0035818442 scopus 로고    scopus 로고
    • Membrane binding kinetics of protein kinase C betaII mediated by the C2 domain
    • Nalefski E.A., Newton A.C. Membrane binding kinetics of protein kinase C betaII mediated by the C2 domain. Biochemistry 2001, 40:13216-13229.
    • (2001) Biochemistry , vol.40 , pp. 13216-13229
    • Nalefski, E.A.1    Newton, A.C.2
  • 59
    • 0032582525 scopus 로고    scopus 로고
    • Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals
    • Oancea E., Meyer T. Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 1998, 95:307-318.
    • (1998) Cell , vol.95 , pp. 307-318
    • Oancea, E.1    Meyer, T.2
  • 60
    • 77956466889 scopus 로고    scopus 로고
    • CaV2.1 (P/Q channel) interaction with synaptic proteins is essential for depolarization-evoked release
    • Cohen-Kutner M., et al. CaV2.1 (P/Q channel) interaction with synaptic proteins is essential for depolarization-evoked release. Channels 2010, 4:266-277.
    • (2010) Channels , vol.4 , pp. 266-277
    • Cohen-Kutner, M.1
  • 61
    • 79951529500 scopus 로고    scopus 로고
    • Membrane penetration by synaptotagmin is required for coupling calcium binding to vesicle fusion in vivo
    • Paddock B.E., et al. Membrane penetration by synaptotagmin is required for coupling calcium binding to vesicle fusion in vivo. J. Neurosci. 2011, 31:2248-2257.
    • (2011) J. Neurosci. , vol.31 , pp. 2248-2257
    • Paddock, B.E.1
  • 62
    • 84874843974 scopus 로고    scopus 로고
    • Presynaptic calcium influx controls neurotransmitter release in part by regulating the effective size of the readily releasable pool
    • Thanawala M.S., Regehr W.G. Presynaptic calcium influx controls neurotransmitter release in part by regulating the effective size of the readily releasable pool. J. Neurosci. 2013, 33:4625-4633.
    • (2013) J. Neurosci. , vol.33 , pp. 4625-4633
    • Thanawala, M.S.1    Regehr, W.G.2
  • 64
    • 49749084725 scopus 로고    scopus 로고
    • Vesicle docking in regulated exocytosis
    • Verhage M., Sorensen J.B. Vesicle docking in regulated exocytosis. Traffic 2008, 9:1414-1424.
    • (2008) Traffic , vol.9 , pp. 1414-1424
    • Verhage, M.1    Sorensen, J.B.2
  • 65
    • 79955472293 scopus 로고    scopus 로고
    • Alleviation of oxidative stress by potent and selective thioredoxin-mimetic peptides
    • Bachnoff N., et al. Alleviation of oxidative stress by potent and selective thioredoxin-mimetic peptides. Free Rad. Biol. Med. 2011, 50:1355-1367.
    • (2011) Free Rad. Biol. Med. , vol.50 , pp. 1355-1367
    • Bachnoff, N.1
  • 66
    • 84892838715 scopus 로고    scopus 로고
    • 2+-channel and cysteine residues of syntaxin 1A coordinates synchronous release
    • 2+-channel and cysteine residues of syntaxin 1A coordinates synchronous release. Sci. Rep. 2013, 3:1620. 10.1038/srep01620.
    • (2013) Sci. Rep. , vol.3 , pp. 1620
    • Bachnoff, N.1
  • 67
    • 0035837327 scopus 로고    scopus 로고
    • The transmembrane domain of syntaxin 1A negatively regulates voltage-sensitive Ca(2+) channels
    • Trus M., et al. The transmembrane domain of syntaxin 1A negatively regulates voltage-sensitive Ca(2+) channels. Neuroscience 2001, 104:599-607.
    • (2001) Neuroscience , vol.104 , pp. 599-607
    • Trus, M.1
  • 68
    • 0043208745 scopus 로고    scopus 로고
    • Syntaxin 1A modulates the voltage-gated L-type calcium channel (Ca(v)1.2) in a cooperative manner
    • Arien H., et al. Syntaxin 1A modulates the voltage-gated L-type calcium channel (Ca(v)1.2) in a cooperative manner. J. Biol. Chem. 2003, 278:29231-29239.
    • (2003) J. Biol. Chem. , vol.278 , pp. 29231-29239
    • Arien, H.1
  • 69
    • 84934435879 scopus 로고    scopus 로고
    • 2+-evoked secretion in Xenopus oocytes monitored by membrane capacitance
    • 2+-evoked secretion in Xenopus oocytes monitored by membrane capacitance. Methods Mol. Biol. 2008, 440:269-282.
    • (2008) Methods Mol. Biol. , vol.440 , pp. 269-282
    • Cohen, R.1
  • 70
    • 0023238873 scopus 로고
    • Currents through the fusion pore that forms during exocytosis of a secretory vesicle
    • Breckenridge L.J., Almers W. Currents through the fusion pore that forms during exocytosis of a secretory vesicle. Nature 1987, 328:814-817.
    • (1987) Nature , vol.328 , pp. 814-817
    • Breckenridge, L.J.1    Almers, W.2
  • 71
    • 0015520673 scopus 로고
    • Twitches in the presence of ethylene glycol bis(-aminoethyl ether)-N,N'-tetracetic acid
    • Armstrong C.M., et al. Twitches in the presence of ethylene glycol bis(-aminoethyl ether)-N,N'-tetracetic acid. Biochim. Biophys. Acta 1972, 267:605-608.
    • (1972) Biochim. Biophys. Acta , vol.267 , pp. 605-608
    • Armstrong, C.M.1
  • 72
    • 0019992113 scopus 로고
    • Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling
    • Gonzalez-Serratos H., et al. Slow inward calcium currents have no obvious role in muscle excitation-contraction coupling. Nature 1982, 298:292-294.
    • (1982) Nature , vol.298 , pp. 292-294
    • Gonzalez-Serratos, H.1
  • 73
    • 0028144329 scopus 로고
    • Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors
    • Garcia J., et al. Relationship of calcium transients to calcium currents and charge movements in myotubes expressing skeletal and cardiac dihydropyridine receptors. J. Gen. Physiol. 1994, 103:125-147.
    • (1994) J. Gen. Physiol. , vol.103 , pp. 125-147
    • Garcia, J.1
  • 74
    • 0032888515 scopus 로고    scopus 로고
    • Role of calcium permeation in dihydropyridine receptor function. Insights into channel gating and excitation-contraction coupling
    • Dirksen R.T., Beam K.G. Role of calcium permeation in dihydropyridine receptor function. Insights into channel gating and excitation-contraction coupling. J. Gen. Physiol. 1999, 114:393-403.
    • (1999) J. Gen. Physiol. , vol.114 , pp. 393-403
    • Dirksen, R.T.1    Beam, K.G.2
  • 75
    • 13444278746 scopus 로고    scopus 로고
    • The recombinant dihydropyridine receptor II-III loop and partly structured 'C' region peptides modify cardiac ryanodine receptor activity
    • Dulhunty A.F., et al. The recombinant dihydropyridine receptor II-III loop and partly structured 'C' region peptides modify cardiac ryanodine receptor activity. Biochem. J. 2005, 385:803-813.
    • (2005) Biochem. J. , vol.385 , pp. 803-813
    • Dulhunty, A.F.1
  • 76
    • 0028595727 scopus 로고
    • Identification of a syntaxin-binding site on N-type calcium channels
    • Sheng Z.H., et al. Identification of a syntaxin-binding site on N-type calcium channels. Neuron 1994, 13:1303-1313.
    • (1994) Neuron , vol.13 , pp. 1303-1313
    • Sheng, Z.H.1
  • 77
    • 0029760302 scopus 로고    scopus 로고
    • 2+ channels
    • 2+ channels. EMBO J. 1996, 15:4100-4110.
    • (1996) EMBO J. , vol.15 , pp. 4100-4110
    • Wiser, O.1
  • 78
    • 84855983508 scopus 로고    scopus 로고
    • 2+ channels exhibit unique regulation and functional roles in cardiomyocytes
    • 2+ channels exhibit unique regulation and functional roles in cardiomyocytes. J. Mol. Cell. Cardiol. 2012, 52:376-387.
    • (2012) J. Mol. Cell. Cardiol. , vol.52 , pp. 376-387
    • Best, J.M.1    Kamp, T.J.2
  • 79
    • 0037115113 scopus 로고    scopus 로고
    • Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body
    • Satzler K., et al. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci. 2002, 22:10567-10579.
    • (2002) J. Neurosci. , vol.22 , pp. 10567-10579
    • Satzler, K.1
  • 80
    • 84859433512 scopus 로고    scopus 로고
    • Synaptic vesicle pools: an update
    • Denker A., Rizzoli S.O. Synaptic vesicle pools: an update. Front. Synaptic Neurosci. 2010, 2:135. 10.3389/fnsyn.2010.00135.
    • (2010) Front. Synaptic Neurosci. , vol.2 , pp. 135
    • Denker, A.1    Rizzoli, S.O.2
  • 81
    • 0030051762 scopus 로고    scopus 로고
    • A difference in the cellular mechanisms of secretion of adrenaline and noradrenaline revealed with lanthanum in bovine chromaffin cells
    • Powis D.A., Clark C.L. A difference in the cellular mechanisms of secretion of adrenaline and noradrenaline revealed with lanthanum in bovine chromaffin cells. Neurosci. Lett. 1996, 203:131-134.
    • (1996) Neurosci. Lett. , vol.203 , pp. 131-134
    • Powis, D.A.1    Clark, C.L.2
  • 82
    • 84885860678 scopus 로고    scopus 로고
    • Lipid-anchored SNAREs lacking transmembrane regions fully support membrane fusion during neurotransmitter release
    • Zhou P., et al. Lipid-anchored SNAREs lacking transmembrane regions fully support membrane fusion during neurotransmitter release. Neuron 2013, 80:470-483.
    • (2013) Neuron , vol.80 , pp. 470-483
    • Zhou, P.1
  • 83
    • 33751342912 scopus 로고    scopus 로고
    • Self-interaction of a SNARE transmembrane domain promotes the hemifusion-to-fusion transition
    • Hofmann M.W., et al. Self-interaction of a SNARE transmembrane domain promotes the hemifusion-to-fusion transition. J. Mol. Biol. 2006, 364:1048-1060.
    • (2006) J. Mol. Biol. , vol.364 , pp. 1048-1060
    • Hofmann, M.W.1
  • 84
    • 0029842873 scopus 로고    scopus 로고
    • Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle
    • Flucher B.E., Franzini-Armstrong C. Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:8101-8106.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 8101-8106
    • Flucher, B.E.1    Franzini-Armstrong, C.2
  • 85
    • 0028928472 scopus 로고
    • Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle
    • Sun X.H., et al. Molecular architecture of membranes involved in excitation-contraction coupling of cardiac muscle. J. Cell Biol. 1995, 129:659-671.
    • (1995) J. Cell Biol. , vol.129 , pp. 659-671
    • Sun, X.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.