메뉴 건너뛰기




Volumn 201, Issue 5, 2013, Pages 725-740

Cryo-electron tomography reveals a critical role of RIM1 α in synaptic vesicle tethering

Author keywords

[No Author keywords available]

Indexed keywords

CELL PROTEIN; PROTEASOME; RAB3 INTERACTING MOLECULE ALPHA; UNCLASSIFIED DRUG;

EID: 84878612423     PISSN: 00219525     EISSN: 15408140     Source Type: Journal    
DOI: 10.1083/jcb.201206063     Document Type: Article
Times cited : (102)

References (65)
  • 1
    • 33745835747 scopus 로고    scopus 로고
    • Binding to Rab3A-interacting molecule RIM regulates the presynaptic recruitment of Munc13-1 and ubMunc13-2
    • Andrews-Zwilling, Y.S., H. Kawabe, K. Reim, F. Varoqueaux, and N. Brose. 2006. Binding to Rab3A-interacting molecule RIM regulates the presynaptic recruitment of Munc13-1 and ubMunc13-2. J. Biol. Chem. 281: 19720-19731. http://dx.doi.org/10.1074/jbc.M601421200
    • (2006) J. Biol. Chem. , vol.281 , pp. 19720-19731
    • Andrews-Zwilling, Y.S.1    Kawabe, H.2    Reim, K.3    Varoqueaux, F.4    Brose, N.5
  • 2
    • 0037441501 scopus 로고    scopus 로고
    • Synaptic Drosophila UNC-13 is regulated by antagonistic G-protein pathways via a proteasome-dependent degradation mechanism
    • Aravamudan, B., and K. Broadie. 2003. Synaptic Drosophila UNC-13 is regulated by antagonistic G-protein pathways via a proteasome-dependent degradation mechanism. J. Neurobiol. 54:417-438. http://dx.doi.org/10 .1002/neu.10142
    • (2003) J. Neurobiol. , vol.54 , pp. 417-438
    • Aravamudan, B.1    Broadie, K.2
  • 3
    • 78650962524 scopus 로고    scopus 로고
    • Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease
    • Bingol, B., and M. Sheng. 2011. Deconstruction for reconstruction: the role of proteolysis in neural plasticity and disease. Neuron. 69:22-32. http:// dx.doi.org/10.1016/j.neuron.2010.11.006
    • (2011) Neuron. , vol.69 , pp. 22-32
    • Bingol, B.1    Sheng, M.2
  • 4
    • 77950970508 scopus 로고    scopus 로고
    • RIM1 α and interacting proteins involved in presynaptic plasticity mediate prepulse inhibition and additional behaviors linked to schizophrenia
    • Blundell, J., P.S. Kaeser, T.C. Südhof, and C.M. Powell. 2010. RIM1 α and interacting proteins involved in presynaptic plasticity mediate prepulse inhibition and additional behaviors linked to schizophrenia. J. Neurosci. 30:5326-5333. http://dx.doi.org/10.1523/JNEUROSCI.0328-10.2010
    • (2010) J. Neurosci. , vol.30 , pp. 5326-5333
    • Blundell, J.1    Kaeser, P.S.2    Südhof, T.C.3    Powell, C.M.4
  • 5
    • 33845764296 scopus 로고    scopus 로고
    • A guided tour into subcellular colocalization analysis in light microscopy
    • Bolte, S., and F.P. Cordeliéres. 2006. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224:213-232. http://dx.doi.org/10.1111/j.1365-2818.2006.01706.x
    • (2006) J. Microsc. , vol.224 , pp. 213-232
    • Bolte, S.1    Cordeliéres, F.P.2
  • 6
    • 2942752010 scopus 로고    scopus 로고
    • Multiple roles for the active zone protein RIM1 α in late stages of neurotransmitter release
    • Calakos, N., S. Schoch, T.C. Südhof, and R.C. Malenka. 2004. Multiple roles for the active zone protein RIM1 α in late stages of neurotransmitter release. Neuron. 42:889-896. http://dx.doi.org/10.1016/j.neuron.2004.05.014
    • (2004) Neuron. , vol.42 , pp. 889-896
    • Calakos, N.1    Schoch, S.2    Südhof, T.C.3    Malenka, R.C.4
  • 7
    • 78649927344 scopus 로고    scopus 로고
    • Superresolution imaging of chemical synapses in the brain
    • Dani, A., B. Huang, J. Bergan, C. Dulac, and X. Zhuang. 2010. Superresolution imaging of chemical synapses in the brain. Neuron. 68:843-856. http://dx.doi.org/10.1016/j.neuron.2010.11.021
    • (2010) Neuron. , vol.68 , pp. 843-856
    • Dani, A.1    Huang, B.2    Bergan, J.3    Dulac, C.4    Zhuang, X.5
  • 8
    • 78651504517 scopus 로고    scopus 로고
    • RIM proteins activate vesicle priming by reversing autoinhibitory homodimerization of Munc13
    • Deng, L., P.S. Kaeser, W. Xu, and T.C. Südhof. 2011. RIM proteins activate vesicle priming by reversing autoinhibitory homodimerization of Munc13. Neuron. 69:317-331. http://dx.doi.org/10.1016/j.neuron.2011.01.005
    • (2011) Neuron. , vol.69 , pp. 317-331
    • Deng, L.1    Kaeser, P.S.2    Xu, W.3    Südhof, T.C.4
  • 9
    • 69449108209 scopus 로고    scopus 로고
    • Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes
    • de Wit, H., A.M. Walter, I. Milosevic, A. Gulyás-Kovács, D. Riedel, J.B. Soørensen, and M. Verhage. 2009. Synaptotagmin-1 docks secretory vesicles to syntaxin-1/SNAP-25 acceptor complexes. Cell. 138:935-946. http://dx.doi.org/10.1016/j.cell.2009.07.027
    • (2009) Cell. , vol.138 , pp. 935-946
    • de Wit, H.1    Walter, A.M.2    Milosevic, I.3    Gulyás-Kovács, A.4    Riedel, D.5    Soørensen, J.B.6    Verhage, M.7
  • 10
    • 0035239220 scopus 로고    scopus 로고
    • The cell in absence of aggregation artifacts
    • Dubochet, J., and N. Sartori Blanc. 2001. The cell in absence of aggregation artifacts. Micron. 32:91-99. http://dx.doi.org/10.1016/S0968- 4328(00)00026-3
    • (2001) Micron. , vol.32 , pp. 91-99
    • Dubochet, J.1    Sartori Blanc, N.2
  • 12
    • 0023868787 scopus 로고
    • A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions
    • Dunkley, P.R., J.W. Heath, S.M. Harrison, P.E. Jarvie, P.J. Glenfield, and J.A.P. Rostas. 1988. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: homogeneity and morphology of subcellular fractions. Brain Res. 441:59-71. http://dx.doi.org/10.1016/0006-8993(88)91383-2
    • (1988) Brain Res. , vol.441 , pp. 59-71
    • Dunkley, P.R.1    Heath, J.W.2    Harrison, S.M.3    Jarvie, P.E.4    Glenfield, P.J.5    Rostas, J.A.P.6
  • 13
    • 34548565630 scopus 로고    scopus 로고
    • The neurotransmitter cycle and quantal size
    • Edwards, R.H. 2007. The neurotransmitter cycle and quantal size. Neuron. 55:835-858. http://dx.doi.org/10.1016/j.neuron.2007.09.001
    • (2007) Neuron. , vol.55 , pp. 835-858
    • Edwards, R.H.1
  • 14
    • 0345414562 scopus 로고    scopus 로고
    • An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms
    • Fernández, J.-J., and S. Li. 2003. An improved algorithm for anisotropic nonlinear diffusion for denoising cryo-tomograms. J. Struct. Biol. 144:152-161. http://dx.doi.org/10.1016/j.jsb.2003.09.010
    • (2003) J. Struct. Biol. , vol.144 , pp. 152-161
    • Fernández, J.-J.1    Li, S.2
  • 15
    • 75749090069 scopus 로고    scopus 로고
    • Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography
    • Fernández-Busnadiego, R., B. Zuber, U.E. Maurer, M. Cyrklaff, W. Baumeister, and V. Lucić. 2010. Quantitative analysis of the native presynaptic cytomatrix by cryoelectron tomography. J. Cell Biol. 188:145-156. http://dx.doi.org/10.1083/jcb.200908082
    • (2010) J. Cell Biol. , vol.188 , pp. 145-156
    • Fernández-Busnadiego, R.1    Zuber, B.2    Maurer, U.E.3    Cyrklaff, M.4    Baumeister, W.5    Lucić, V.6
  • 17
    • 55249126671 scopus 로고    scopus 로고
    • The ubiquitin-proteasome system is necessary for long-term synaptic depression in Aplysia
    • Fioravante, D., R.-Y. Liu, and J.H. Byrne. 2008. The ubiquitin-proteasome system is necessary for long-term synaptic depression in Aplysia. J. Neurosci. 28:10245-10256. http://dx.doi.org/10.1523/JNEUROSCI.2139-08.2008
    • (2008) J. Neurosci. , vol.28 , pp. 10245-10256
    • Fioravante, D.1    Liu, R.-Y.2    Byrne, J.H.3
  • 18
    • 34249780096 scopus 로고    scopus 로고
    • CB1 receptors diminish both Ca2+ influx and glutamate release through two different mechanisms active in distinct populations of cerebrocortical nerve terminals
    • Godino, MdelC., M. Torres, and J. Sánchez-Prieto. 2007. CB1 receptors diminish both Ca2+ influx and glutamate release through two different mechanisms active in distinct populations of cerebrocortical nerve terminals. J. Neurochem. 101:1471-1482. http://dx.doi.org/10.1111/j.1471-4159.2006.04422.x
    • (2007) J. Neurochem. , vol.101 , pp. 1471-1482
    • Godino Mdel, C.1    Torres, M.2    Sánchez-Prieto, J.3
  • 21
    • 78651481610 scopus 로고    scopus 로고
    • 2+ channel density and vesicle docking at the presynaptic active zone
    • 2+ channel density and vesicle docking at the presynaptic active zone. Neuron. 69:304-316. http://dx.doi.org/10.1016/j.neuron.2010.12.014
    • (2011) Neuron. , vol.69 , pp. 304-316
    • Han, Y.1    Kaeser, P.S.2    Südhof, T.C.3    Schneggenburger, R.4
  • 22
    • 0023836638 scopus 로고
    • A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: viability of subcellular fractions
    • Harrison, S.M., P.E. Jarvie, and P.R. Dunkley. 1988. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: viability of subcellular fractions. Brain Res. 441:72-80. http://dx.doi.org/10.1016/0006-8993(88)91384-4
    • (1988) Brain Res. , vol.441 , pp. 72-80
    • Harrison, S.M.1    Jarvie, P.E.2    Dunkley, P.R.3
  • 23
    • 0024595352 scopus 로고
    • The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1
    • Hirokawa, N., K. Sobue, K. Kanda, A. Harada, and H. Yorifuji. 1989. The cytoskeletal architecture of the presynaptic terminal and molecular structure of synapsin 1. J. Cell Biol. 108:111-126. http://dx.doi.org/10.1083/jcb.108.1.111
    • (1989) J. Cell Biol. , vol.108 , pp. 111-126
    • Hirokawa, N.1    Sobue, K.2    Kanda, K.3    Harada, A.4    Yorifuji, H.5
  • 24
    • 84867295592 scopus 로고    scopus 로고
    • Molecular machines governing exocytosis of synaptic vesicles
    • Jahn, R., and D. Fasshauer. 2012. Molecular machines governing exocytosis of synaptic vesicles. Nature. 490:201-207. http://dx.doi.org/10.1038/nature11320
    • (2012) Nature. , vol.490 , pp. 201-207
    • Jahn, R.1    Fasshauer, D.2
  • 25
    • 76149085199 scopus 로고    scopus 로고
    • A role for the ubiquitin-proteasome system in activity-dependent presynaptic silencing
    • Jiang, X., P.E. Litkowski, A.A. Taylor, Y. Lin, B.J. Snider, and K.L. Moulder. 2010. A role for the ubiquitin-proteasome system in activity-dependent presynaptic silencing. J. Neurosci. 30:1798-1809. http://dx.doi.org/10.1523/JNEUROSCI.4965-09.2010
    • (2010) J. Neurosci. , vol.30 , pp. 1798-1809
    • Jiang, X.1    Litkowski, P.E.2    Taylor, A.A.3    Lin, Y.4    Snider, B.J.5    Moulder, K.L.6
  • 26
    • 58149388899 scopus 로고    scopus 로고
    • RIM1 α and RIM1 α are synthesized from distinct promoters of the RIM1 α gene to mediate differential but overlapping synaptic functions
    • Kaeser, P.S., H.-B. Kwon, C.Q. Chiu, L. Deng, P.E. Castillo, and T.C. Südhof. 2008. RIM1 α and RIM1 α are synthesized from distinct promoters of the RIM1 α gene to mediate differential but overlapping synaptic functions. J. Neurosci. 28:13435-13447. http://dx.doi.org/10.1523/JNEUROSCI.3235-08.2008
    • (2008) J. Neurosci. , vol.28 , pp. 13435-13447
    • Kaeser, P.S.1    Kwon, H.-B.2    Chiu, C.Q.3    Deng, L.4    Castillo, P.E.5    Südhof, T.C.6
  • 27
    • 78651509693 scopus 로고    scopus 로고
    • RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction
    • Kaeser, P.S., L. Deng, Y. Wang, I. Dulubova, X. Liu, J. Rizo, and T.C. Südhof. 2011. RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell. 144:282-295. http://dx.doi.org/10.1016/j.cell.2010.12.029
    • (2011) Cell. , vol.144 , pp. 282-295
    • Kaeser, P.S.1    Deng, L.2    Wang, Y.3    Dulubova, I.4    Liu, X.5    Rizo, J.6    Südhof, T.C.7
  • 28
    • 33845669155 scopus 로고    scopus 로고
    • Molecular dynamics of a presynaptic active zone protein studied in Munc13-1-enhanced yellow fluorescent protein knock-in mutant mice
    • Kalla, S., M. Stern, J. Basu, F. Varoqueaux, K. Reim, C. Rosenmund, N.E. Ziv, and N. Brose. 2006. Molecular dynamics of a presynaptic active zone protein studied in Munc13-1-enhanced yellow fluorescent protein knock-in mutant mice. J. Neurosci. 26:13054-13066. http://dx.doi.org/10.1523/JNEUROSCI.4330-06.2006
    • (2006) J. Neurosci. , vol.26 , pp. 13054-13066
    • Kalla, S.1    Stern, M.2    Basu, J.3    Varoqueaux, F.4    Reim, K.5    Rosenmund, C.6    Ziv, N.E.7    Brose, N.8
  • 29
    • 27644518292 scopus 로고    scopus 로고
    • Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates
    • Kisselev, A.F., and A.L. Goldberg. 2005. Monitoring activity and inhibition of 26S proteasomes with fluorogenic peptide substrates. Methods Enzymol. 398:364-378. http://dx.doi.org/10.1016/S0076-6879(05)98030-0
    • (2005) Methods Enzymol. , vol.398 , pp. 364-378
    • Kisselev, A.F.1    Goldberg, A.L.2
  • 30
    • 0029879295 scopus 로고    scopus 로고
    • Computer visualization of three-dimensional image data using IMOD
    • Kremer, J.R., D.N. Mastronarde, and J.R. McIntosh. 1996. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116:71-76. http://dx.doi.org/10.1006/jsbi.1996.0013
    • (1996) J. Struct. Biol. , vol.116 , pp. 71-76
    • Kremer, J.R.1    Mastronarde, D.N.2    McIntosh, J.R.3
  • 31
    • 0024002576 scopus 로고
    • The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse
    • Landis, D.M.D., A.K. Hall, L.A. Weinstein, and T.S. Reese. 1988. The organization of cytoplasm at the presynaptic active zone of a central nervous system synapse. Neuron. 1:201-209. http://dx.doi.org/10.1016/0896- 6273(88)90140-7
    • (1988) Neuron. , vol.1 , pp. 201-209
    • Landis, D.M.D.1    Hall, A.K.2    Weinstein, L.A.3    Reese, T.S.4
  • 32
    • 79960383831 scopus 로고    scopus 로고
    • Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing
    • Lazarevic, V., C. Schöne, M. Heine, E.D. Gundelfinger, and A. Fejtova. 2011. Extensive remodeling of the presynaptic cytomatrix upon homeostatic adaptation to network activity silencing. J. Neurosci. 31:10189-10200.
    • (2011) J. Neurosci. , vol.31 , pp. 10189-10200
    • Lazarevic, V.1    Schöne, C.2    Heine, M.3    Gundelfinger, E.D.4    Fejtova, A.5
  • 34
    • 80054056038 scopus 로고    scopus 로고
    • The crystal structure of a Munc13 C-terminal module exhibits a remarkable similarity to vesicle tethering factors
    • Li, W., C. Ma, R. Guan, Y. Xu, D.R. Tomchick, and J. Rizo. 2011. The crystal structure of a Munc13 C-terminal module exhibits a remarkable similarity to vesicle tethering factors. Structure. 19:1443-1455. http://dx.doi.org/10.1016/j.str.2011.07.012
    • (2011) Structure. , vol.19 , pp. 1443-1455
    • Li, W.1    Ma, C.2    Guan, R.3    Xu, Y.4    Tomchick, D.R.5    Rizo, J.6
  • 35
    • 85027945821 scopus 로고    scopus 로고
    • Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex
    • Ma, C., W. Li, Y. Xu, and J. Rizo. 2011. Munc13 mediates the transition from the closed syntaxin-Munc18 complex to the SNARE complex. Nat. Struct. Mol. Biol. 18:542-549. http://dx.doi.org/10.1038/nsmb.2047
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 542-549
    • Ma, C.1    Li, W.2    Xu, Y.3    Rizo, J.4
  • 36
    • 84872802734 scopus 로고    scopus 로고
    • Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release
    • Ma, C., L. Su, A.B. Seven, Y. Xu, and J. Rizo. 2013. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science. 339:421-425. http://dx.doi.org/10.1126/science.1230473
    • (2013) Science. , vol.339 , pp. 421-425
    • Ma, C.1    Su, L.2    Seven, A.B.3    Xu, Y.4    Rizo, J.5
  • 37
    • 34447623013 scopus 로고    scopus 로고
    • mGluR7 inhibits glutamate release through a PKC-independent decrease in the activity of P/Q-type Ca2+ channels and by diminishing cAMP in hippocampal nerve terminals
    • Martín, R., M. Torres, and J. Sánchez-Prieto. 2007. mGluR7 inhibits glutamate release through a PKC-independent decrease in the activity of P/Q-type Ca2+ channels and by diminishing cAMP in hippocampal nerve terminals. Eur. J. Neurosci. 26:312-322. http://dx.doi.org/10.1111/j.1460- 9568.2007.05660.x
    • (2007) Eur. J. Neurosci. , vol.26 , pp. 312-322
    • Martín, R.1    Torres, M.2    Sánchez-Prieto, J.3
  • 38
    • 77956632647 scopus 로고    scopus 로고
    • RIM proteins and their role in synapse function
    • Mittelstaedt, T., E. Alvaréz-Baron, and S. Schoch. 2010. RIM proteins and their role in synapse function. Biol. Chem. 391:599-606. http://dx.doi.org/10.1515/bc.2010.064
    • (2010) Biol. Chem. , vol.391 , pp. 599-606
    • Mittelstaedt, T.1    Alvaréz-Baron, E.2    Schoch, S.3
  • 39
    • 77950869684 scopus 로고    scopus 로고
    • Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis
    • Mukherjee, K., X. Yang, S.H. Gerber, H.-B. Kwon, A. Ho, P.E. Castillo, X. Liu, and T.C. Südhof. 2010. Piccolo and bassoon maintain synaptic vesicle clustering without directly participating in vesicle exocytosis. Proc. Natl. Acad. Sci. USA. 107:6504-6509. http://dx.doi.org/10.1073/pnas.1002307107
    • (2010) Proc. Natl. Acad. Sci. USA. , vol.107 , pp. 6504-6509
    • Mukherjee, K.1    Yang, X.2    Gerber, S.H.3    Kwon, H.-B.4    Ho, A.5    Castillo, P.E.6    Liu, X.7    Südhof, T.C.8
  • 40
    • 0141816763 scopus 로고    scopus 로고
    • Bioenergetics and transmitter release in the isolated nerve terminal
    • Nicholls, D.G. 2003. Bioenergetics and transmitter release in the isolated nerve terminal. Neurochem. Res. 28:1433-1441. http://dx.doi.org/10.1023/A:1025653805029
    • (2003) Neurochem. Res. , vol.28 , pp. 1433-1441
    • Nicholls, D.G.1
  • 42
    • 84865765275 scopus 로고    scopus 로고
    • The presynaptic active zone protein RIM1 α controls epileptogenesis following status epilepticus
    • Pitsch, J., T. Opitz, V. Borm, A. Woitecki, M. Staniek, H. Beck, A.J. Becker, and S. Schoch. 2012. The presynaptic active zone protein RIM1 α controls epileptogenesis following status epilepticus. J. Neurosci. 32:12384- 12395. http://dx.doi.org/10.1523/JNEUROSCI.0223-12.2012
    • (2012) J. Neurosci. , vol.32
    • Pitsch, J.1    Opitz, T.2    Borm, V.3    Woitecki, A.4    Staniek, M.5    Beck, H.6    Becker, A.J.7    Schoch, S.8
  • 43
    • 1842505509 scopus 로고    scopus 로고
    • The presynaptic active zone protein RIM1 α is critical for normal learning and memory
    • Powell, C.M., S. Schoch, L. Monteggia, M. Barrot, M.F. Matos, N. Feldmann, T.C. Südhof, and E.J. Nestler. 2004. The presynaptic active zone protein RIM1 α is critical for normal learning and memory. Neuron. 42:143-153. http://dx.doi.org/10.1016/S0896-6273(04)00146-1
    • (2004) Neuron. , vol.42 , pp. 143-153
    • Powell, C.M.1    Schoch, S.2    Monteggia, L.3    Barrot, M.4    Matos, M.F.5    Feldmann, N.6    Südhof, T.C.7    Nestler, E.J.8
  • 44
    • 77749323170 scopus 로고    scopus 로고
    • Ubiquitination acutely regulates presynaptic neurotransmitter release in mammalian neurons
    • Rinetti, G.V., and F.E. Schweizer. 2010. Ubiquitination acutely regulates presynaptic neurotransmitter release in mammalian neurons. J. Neurosci. 30:3157-3166. http://dx.doi.org/10.1523/JNEUROSCI.3712-09.2010
    • (2010) J. Neurosci. , vol.30 , pp. 3157-3166
    • Rinetti, G.V.1    Schweizer, F.E.2
  • 45
    • 0030820683 scopus 로고    scopus 로고
    • Quantitative ultrastructural analysis of hippocampal excitatory synapses
    • Schikorski, T., and C.F. Stevens. 1997. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17:5858-5867.
    • (1997) J. Neurosci. , vol.17 , pp. 5858-5867
    • Schikorski, T.1    Stevens, C.F.2
  • 46
    • 84863205849 scopus 로고    scopus 로고
    • NIH Image to ImageJ: 25 years of image analysis
    • Schneider, C.A., W.S. Rasband, and K.W. Eliceiri. 2012. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 9:671-675. http://dx.doi.org/10.1038/nmeth.2089
    • (2012) Nat. Methods. , vol.9 , pp. 671-675
    • Schneider, C.A.1    Rasband, W.S.2    Eliceiri, K.W.3
  • 47
    • 33748940272 scopus 로고    scopus 로고
    • Molecular organization of the presynaptic active zone
    • Schoch, S., and E.D. Gundelfinger. 2006. Molecular organization of the presynaptic active zone. Cell Tissue Res. 326:379-391. http://dx.doi.org/10.1007/s00441-006-0244-y
    • (2006) Cell Tissue Res. , vol.326 , pp. 379-391
    • Schoch, S.1    Gundelfinger, E.D.2
  • 51
    • 67649871266 scopus 로고    scopus 로고
    • A common molecular basis for membrane docking and functional priming of synaptic vesicles
    • Siksou, L., F. Varoqueaux, O. Pascual, A. Triller, N. Brose, and S. Marty. 2009. A common molecular basis for membrane docking and functional priming of synaptic vesicles. Eur. J. Neurosci. 30:49-56. http://dx.doi.org/10.1111/j.1460-9568.2009.06811.x
    • (2009) Eur. J. Neurosci. , vol.30 , pp. 49-56
    • Siksou, L.1    Varoqueaux, F.2    Pascual, O.3    Triller, A.4    Brose, N.5    Marty, S.6
  • 52
    • 79955658964 scopus 로고    scopus 로고
    • Ultrastructural organization of presynaptic terminals
    • Siksou, L., A. Triller, and S. Marty. 2011. Ultrastructural organization of presynaptic terminals. Curr. Opin. Neurobiol. 21:261-268. http://dx.doi.org/10.1016/j.conb.2010.12.003
    • (2011) Curr. Opin. Neurobiol. , vol.21 , pp. 261-268
    • Siksou, L.1    Triller, A.2    Marty, S.3
  • 53
    • 0037737757 scopus 로고    scopus 로고
    • The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy
    • Speese, S.D., N. Trotta, C.K. Rodesch, B. Aravamudan, and K. Broadie. 2003. The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy. Curr. Biol. 13:899-910. http://dx.doi.org/10.1016/S0960-9822(03)00338-5
    • (2003) Curr. Biol. , vol.13 , pp. 899-910
    • Speese, S.D.1    Trotta, N.2    Rodesch, C.K.3    Aravamudan, B.4    Broadie, K.5
  • 54
    • 2942556680 scopus 로고    scopus 로고
    • The synaptic vesicle cycle
    • Südhof, T.C. 2004. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27:509- 547. http://dx.doi.org/10.1146/annurev.neuro.26.041002.131412
    • (2004) Annu. Rev. Neurosci. , vol.27 , pp. 509-547
    • Südhof, T.C.1
  • 55
    • 84863826404 scopus 로고    scopus 로고
    • The presynaptic active zone
    • Südhof, T.C. 2012. The presynaptic active zone. Neuron. 75:11-25. http://dx.doi.org/10.1016/j.neuron.2012.06.012
    • (2012) Neuron. , vol.75 , pp. 11-25
    • Südhof, T.C.1
  • 57
    • 77953467032 scopus 로고    scopus 로고
    • Characterization of the brain 26S proteasome and its interacting proteins
    • Tai, H.-C., H. Besche, A.L. Goldberg, and E.M. Schuman. 2010. Characterization of the brain 26S proteasome and its interacting proteins. Front Mol. Neurosci. 3:12.
    • (2010) Front Mol. Neurosci. , vol.3 , pp. 12
    • Tai, H.-C.1    Besche, H.2    Goldberg, A.L.3    Schuman, E.M.4
  • 58
    • 33746445842 scopus 로고    scopus 로고
    • Activity-related redistribution of presynaptic proteins at the active zone
    • Tao-Cheng, J.H. 2006. Activity-related redistribution of presynaptic proteins at the active zone. Neuroscience. 141:1217-1224. http://dx.doi.org/10.1016/j.neuroscience.2006.04.061
    • (2006) Neuroscience. , vol.141 , pp. 1217-1224
    • Tao-Cheng, J.H.1
  • 59
    • 0034237814 scopus 로고    scopus 로고
    • Facilitation, augmentation and potentiation at central synapses
    • Thomson, A.M. 2000. Facilitation, augmentation and potentiation at central synapses. Trends Neurosci. 23:305-312. http://dx.doi.org/10.1016/S0166- 2236(00)01580-0
    • (2000) Trends Neurosci. , vol.23 , pp. 305-312
    • Thomson, A.M.1
  • 60
    • 31744444244 scopus 로고    scopus 로고
    • Differential regulation of proteasome activity in the nucleus and the synaptic terminals
    • Upadhya, S.C., L. Ding, T.K. Smith, and A.N. Hegde. 2006. Differential regulation of proteasome activity in the nucleus and the synaptic terminals. Neurochem. Int. 48:296-305. http://dx.doi.org/10.1016/j.neuint.2005.11.003
    • (2006) Neurochem. Int. , vol.48 , pp. 296-305
    • Upadhya, S.C.1    Ding, L.2    Smith, T.K.3    Hegde, A.N.4
  • 63
    • 0027488803 scopus 로고
    • Thirty years of synaptosome research
    • Whittaker, V.P. 1993. Thirty years of synaptosome research. J. Neurocytol. 22:735-742. http://dx.doi.org/10.1007/BF01181319
    • (1993) J. Neurocytol. , vol.22 , pp. 735-742
    • Whittaker, V.P.1
  • 64
    • 34548243126 scopus 로고    scopus 로고
    • SCRAPPER-dependent ubiquitination of active zone protein RIM1 α regulates synaptic vesicle release
    • Yao, I., H. Takagi, H. Ageta, T. Kahyo, S. Sato, K. Hatanaka, Y. Fukuda, T. Chiba, N. Morone, S. Yuasa, et al. 2007. SCRAPPER-dependent ubiquitination of active zone protein RIM1 α regulates synaptic vesicle release. Cell. 130:943-957. http://dx.doi.org/10.1016/j.cell.2007.06.052
    • (2007) Cell. , vol.130 , pp. 943-957
    • Yao, I.1    Takagi, H.2    Ageta, H.3    Kahyo, T.4    Sato, S.5    Hatanaka, K.6    Fukuda, Y.7    Chiba, T.8    Morone, N.9    Yuasa, S.10
  • 65
    • 79961233449 scopus 로고    scopus 로고
    • Analyses of the spatiotemporal expression and subcellular localization of liprin- proteins
    • Zürner, M., T. Mittelstaedt, S. tom Dieck, A. Becker, and S. Schoch. 2011. Analyses of the spatiotemporal expression and subcellular localization of liprin- proteins. J. Comp. Neurol. 519:3019-3039. http://dx.doi.org/10.1002/cne.22664
    • (2011) J. Comp. Neurol. , vol.519 , pp. 3019-3039
    • Zürner, M.1    Mittelstaedt, T.2    tomDieck, S.3    Becker, A.4    Schoch, S.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.