-
1
-
-
77952478860
-
Prediction of breast cancer prognosis using gene set statistics provides signature stability and biological context
-
doi: 10.1186/1471-2105-11-277
-
Abraham, G., Kowalczyk, A., Loi, S., Haviv, I., and Zobel, J. (2010). Prediction of breast cancer prognosis using gene set statistics provides signature stability and biological context. BMC Bioinformatics 11:277. doi: 10.1186/1471-2105-11-277.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 277
-
-
Abraham, G.1
Kowalczyk, A.2
Loi, S.3
Haviv, I.4
Zobel, J.5
-
2
-
-
35348891430
-
Network-based classification of breast cancer metastasis
-
doi: 10.1038/msb4100180
-
Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D., and Ideker, T. (2007). Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140. doi: 10.1038/msb4100180.
-
(2007)
Mol. Syst. Biol.
, vol.3
, pp. 140
-
-
Chuang, H.-Y.1
Lee, E.2
Liu, Y.-T.3
Lee, D.4
Ideker, T.5
-
3
-
-
84862181484
-
Prognostic gene signatures for patient stratification in breast cancer-accuracy, stability and interpretability of gene selection approaches using prior knowledge on protein-protein interactions
-
doi: 10.1186/1471-2105-13-69
-
Cun, Y., and Fröhlich, H. F. (2012). Prognostic gene signatures for patient stratification in breast cancer-accuracy, stability and interpretability of gene selection approaches using prior knowledge on protein-protein interactions. BMC Bioinformatics 13:69. doi: 10.1186/1471-2105-13-69.
-
(2012)
BMC Bioinformatics
, vol.13
, pp. 69
-
-
Cun, Y.1
Fröhlich, H.F.2
-
4
-
-
77956529131
-
Inferring cancer subnetwork markers using density-constrained biclustering
-
doi: 10.1093/bioinformatics/btq393
-
Dao, P., Colak, R., Salari, R., Moser, F., Davicioni, E., Schönhuth, A., et al. (2010). Inferring cancer subnetwork markers using density-constrained biclustering. Bioinformatics 26, i625-i631. doi: 10.1093/bioinformatics/btq393.
-
(2010)
Bioinformatics
, vol.26
-
-
Dao, P.1
Colak, R.2
Salari, R.3
Moser, F.4
Davicioni, E.5
Schönhuth, A.6
-
5
-
-
13444282534
-
Outcome signature genes in breast cancer: is there a unique set?
-
doi: 10.1093/bioinformatics/bth469
-
Ein-Dor, L., Kela, I., Getz, G., Givol, D., and Domany, E. (2005). Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21, 171-178. doi: 10.1093/bioinformatics/bth469.
-
(2005)
Bioinformatics
, vol.21
, pp. 171-178
-
-
Ein-Dor, L.1
Kela, I.2
Getz, G.3
Givol, D.4
Domany, E.5
-
6
-
-
33645825183
-
Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
-
doi: 10.1073/pnas.0601231103
-
Ein-Dor, L., Zuk, O., and Domany, E. (2006). Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl. Acad. Sci. U.S.A. 103, 5923-5928. doi: 10.1073/pnas.0601231103.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 5923-5928
-
-
Ein-Dor, L.1
Zuk, O.2
Domany, E.3
-
7
-
-
77951726873
-
Gene expression studies using Affymetrix microarrays
-
FL: CRC Press.
-
Gohlmann, H., and Talloen, W. (2010). Gene expression studies using Affymetrix microarrays. Boca Raton, FL: CRC Press.
-
(2010)
Boca Raton
-
-
Gohlmann, H.1
Talloen, W.2
-
8
-
-
70449553671
-
Meta-analysis of gene expression profiles related to relapse-free survival in 1,079 breast cancer patients
-
doi: 10.1007/s10549-008-0242-8
-
Györffy, B., and Schäfer, R. (2009). Meta-analysis of gene expression profiles related to relapse-free survival in 1,079 breast cancer patients. Breast Cancer Res. Treat. 118, 433-441. doi: 10.1007/s10549-008-0242-8.
-
(2009)
Breast Cancer Res. Treat.
, vol.118
, pp. 433-441
-
-
Györffy, B.1
Schäfer, R.2
-
9
-
-
75549090213
-
Kegg for representation and analysis of molecular networks involving diseases and drugs
-
doi: 10.1093/nar/gkp896
-
Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., and Hirakawa, M. (2010). Kegg for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38(Database issue), D355-D360. doi: 10.1093/nar/gkp896.
-
(2010)
Nucleic Acids Res.
, vol.38
, Issue.DATABASE ISSUE
-
-
Kanehisa, M.1
Goto, S.2
Furumichi, M.3
Tanabe, M.4
Hirakawa, M.5
-
10
-
-
57149092133
-
Inferring pathway activity toward precise disease classification
-
doi: 10.1371/journal.pcbi.1000217
-
Lee, E., Chuang, H.-Y., Kim, J.-W., Ideker, T., and Lee, D. (2008). Inferring pathway activity toward precise disease classification. PLoS Comput. Biol. 4:e1000217. doi: 10.1371/journal.pcbi.1000217.
-
(2008)
PLoS Comput. Biol.
, vol.4
-
-
Lee, E.1
Chuang, H.-Y.2
Kim, J.-W.3
Ideker, T.4
Lee, D.5
-
11
-
-
77952332655
-
Incorporating gene co-expression network in identification of cancer prognosis markers
-
doi: 10.1186/1471-2105-11-271
-
Ma, S., Shi, M., Li, Y., Yi, D., and Shia, B.-C. (2010). Incorporating gene co-expression network in identification of cancer prognosis markers. BMC Bioinformatics 11:271. doi: 10.1186/1471-2105-11-271.
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 271
-
-
Ma, S.1
Shi, M.2
Li, Y.3
Yi, D.4
Shia, B.-C.5
-
12
-
-
27644503675
-
Generank: using search engine technology for the analysis of microarray experiments
-
doi: 10.1186/1471-2105-6-233
-
Morrison, J. L., Breitling, R., Higham, D. J., and Gilbert, D. R. (2005). Generank: using search engine technology for the analysis of microarray experiments. BMC Bioinformatics 6:233. doi: 10.1186/1471-2105-6-233.
-
(2005)
BMC Bioinformatics
, vol.6
, pp. 233
-
-
Morrison, J.L.1
Breitling, R.2
Higham, D.J.3
Gilbert, D.R.4
-
13
-
-
0003780986
-
-
Technical Report 1999-66, Stanford InfoLab.
-
Page, L., Brin, S., Motwani, R., and Winograd, T. (1999). The PageRank Citation Ranking: Bringing Order to the Web. Technical Report 1999-66, Stanford InfoLab.
-
(1999)
The PageRank Citation Ranking: Bringing Order to the Web
-
-
Page, L.1
Brin, S.2
Motwani, R.3
Winograd, T.4
-
14
-
-
77954168391
-
Effect of training-sample size and classification difficulty on the accuracy of genomic predictors
-
doi: 10.1186/bcr2468
-
Popovici, V., Chen, W., Gallas, B. G., Hatzis, C., Shi, W., Samuelson, F. W., et al. (2010). Effect of training-sample size and classification difficulty on the accuracy of genomic predictors. Breast Cancer Res 12, R5. doi: 10.1186/bcr2468.
-
(2010)
Breast Cancer Res
, vol.12
-
-
Popovici, V.1
Chen, W.2
Gallas, B.G.3
Hatzis, C.4
Shi, W.5
Samuelson, F.W.6
-
15
-
-
58149193222
-
Human protein reference database-2009 update
-
doi: 10.1093/nar/gkn892
-
Prasad, T. S. K., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., et al. (2009). Human protein reference database-2009 update. Nucleic Acids Res. 37(Database issue), D767-D772. doi: 10.1093/nar/gkn892.
-
(2009)
Nucleic Acids Res.
, vol.37
, Issue.DATABASE ISSUE
-
-
Prasad, T.S.K.1
Goel, R.2
Kandasamy, K.3
Keerthikumar, S.4
Kumar, S.5
Mathivanan, S.6
-
16
-
-
84860478431
-
A critical evaluation of network and pathway-based classifiers for outcome prediction in breast cancer
-
doi: 10.1371/journal.pone.0034796
-
Staiger, C., Cadot, S., Kooter, R., Dittrich, M., Müller, T., Klau, G. W., et al. (2012). A critical evaluation of network and pathway-based classifiers for outcome prediction in breast cancer. PLoS ONE 7:e34796. doi: 10.1371/journal.pone.0034796.
-
(2012)
PLoS ONE
, vol.7
-
-
Staiger, C.1
Cadot, S.2
Kooter, R.3
Dittrich, M.4
Müller, T.5
Klau, G.W.6
-
17
-
-
27344435774
-
Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
-
doi: 10.1073/pnas.0506580102
-
Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545-15550. doi: 10.1073/pnas.0506580102.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 15545-15550
-
-
Subramanian, A.1
Tamayo, P.2
Mootha, V.K.3
Mukherjee, S.4
Ebert, B.L.5
Gillette, M.A.6
-
18
-
-
59849125136
-
Dynamic modularity in protein interaction networks predicts breast cancer outcome
-
doi: 10.1038/nbt.1522
-
Taylor, I. W., Linding, R., Warde-Farley, D., Liu, Y., Pesquita, C., Faria, D., et al. (2009). Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat. Biotechnol. 27, 199-204. doi: 10.1038/nbt.1522.
-
(2009)
Nat. Biotechnol.
, vol.27
, pp. 199-204
-
-
Taylor, I.W.1
Linding, R.2
Warde-Farley, D.3
Liu, Y.4
Pesquita, C.5
Faria, D.6
-
19
-
-
18244409687
-
Gene expression profiling predicts clinical outcome of breast cancer
-
doi: 10.1038/415530a
-
van't Veer, L. J., Dai, H., Van De Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530-536. doi: 10.1038/415530a.
-
(2002)
Nature
, vol.415
, pp. 530-536
-
-
van't Veer, L.J.1
Dai, H.2
Van De Vijver, M.J.3
He, Y.D.4
Hart, A.A.5
Mao, M.6
-
20
-
-
13844310310
-
Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
-
doi: 10.1016/S0140-6736(05)17947-1
-
Wang, Y., Klijn, J. G. M., Zhang, Y., Sieuwerts, A. M., Look, M. P., Yang, F., et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671-679. doi: 10.1016/S0140-6736(05)17947-1.
-
(2005)
Lancet
, vol.365
, pp. 671-679
-
-
Wang, Y.1
Klijn, J.G.M.2
Zhang, Y.3
Sieuwerts, A.M.4
Look, M.P.5
Yang, F.6
-
21
-
-
27544459288
-
A protocol for building and evaluating predictors of disease state based on microarray data
-
doi: 10.1093/bioinformatics/bti429
-
Wessels, L. F. A., Reinders, M. J. T., Hart, A. A. M., Veenman, C. J., Dai, H., He, Y. D., et al. (2005). A protocol for building and evaluating predictors of disease state based on microarray data. Bioinformatics 21, 3755-3762. doi: 10.1093/bioinformatics/bti429.
-
(2005)
Bioinformatics
, vol.21
, pp. 3755-3762
-
-
Wessels, L.F.A.1
Reinders, M.J.T.2
Hart, A.A.M.3
Veenman, C.J.4
Dai, H.5
He, Y.D.6
-
22
-
-
84863677563
-
Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes
-
doi: 10.1371/journal.pcbi.1002511
-
Winter, C., Kristiansen, G., Kersting, S., Roy, J., Aust, D., Knösel, T., et al. (2012). Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLoS Comput. Biol. 8:e1002511. doi: 10.1371/journal.pcbi.1002511.
-
(2012)
PLoS Comput. Biol.
, vol.8
-
-
Winter, C.1
Kristiansen, G.2
Kersting, S.3
Roy, J.4
Aust, D.5
Knösel, T.6
|