메뉴 건너뛰기




Volumn 4, Issue DEC, 2013, Pages

Current composite-feature classification methods do not outperform simple single-genes classifiers in breast cancer prognosis

Author keywords

Breast cancer; Classification; Evaluation; Feature selection; Networks; Outcome prediction

Indexed keywords


EID: 84892385433     PISSN: None     EISSN: 16648021     Source Type: Journal    
DOI: 10.3389/fgene.2013.00289     Document Type: Article
Times cited : (40)

References (22)
  • 1
    • 77952478860 scopus 로고    scopus 로고
    • Prediction of breast cancer prognosis using gene set statistics provides signature stability and biological context
    • doi: 10.1186/1471-2105-11-277
    • Abraham, G., Kowalczyk, A., Loi, S., Haviv, I., and Zobel, J. (2010). Prediction of breast cancer prognosis using gene set statistics provides signature stability and biological context. BMC Bioinformatics 11:277. doi: 10.1186/1471-2105-11-277.
    • (2010) BMC Bioinformatics , vol.11 , pp. 277
    • Abraham, G.1    Kowalczyk, A.2    Loi, S.3    Haviv, I.4    Zobel, J.5
  • 2
    • 35348891430 scopus 로고    scopus 로고
    • Network-based classification of breast cancer metastasis
    • doi: 10.1038/msb4100180
    • Chuang, H.-Y., Lee, E., Liu, Y.-T., Lee, D., and Ideker, T. (2007). Network-based classification of breast cancer metastasis. Mol. Syst. Biol. 3, 140. doi: 10.1038/msb4100180.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 140
    • Chuang, H.-Y.1    Lee, E.2    Liu, Y.-T.3    Lee, D.4    Ideker, T.5
  • 3
    • 84862181484 scopus 로고    scopus 로고
    • Prognostic gene signatures for patient stratification in breast cancer-accuracy, stability and interpretability of gene selection approaches using prior knowledge on protein-protein interactions
    • doi: 10.1186/1471-2105-13-69
    • Cun, Y., and Fröhlich, H. F. (2012). Prognostic gene signatures for patient stratification in breast cancer-accuracy, stability and interpretability of gene selection approaches using prior knowledge on protein-protein interactions. BMC Bioinformatics 13:69. doi: 10.1186/1471-2105-13-69.
    • (2012) BMC Bioinformatics , vol.13 , pp. 69
    • Cun, Y.1    Fröhlich, H.F.2
  • 4
    • 77956529131 scopus 로고    scopus 로고
    • Inferring cancer subnetwork markers using density-constrained biclustering
    • doi: 10.1093/bioinformatics/btq393
    • Dao, P., Colak, R., Salari, R., Moser, F., Davicioni, E., Schönhuth, A., et al. (2010). Inferring cancer subnetwork markers using density-constrained biclustering. Bioinformatics 26, i625-i631. doi: 10.1093/bioinformatics/btq393.
    • (2010) Bioinformatics , vol.26
    • Dao, P.1    Colak, R.2    Salari, R.3    Moser, F.4    Davicioni, E.5    Schönhuth, A.6
  • 5
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: is there a unique set?
    • doi: 10.1093/bioinformatics/bth469
    • Ein-Dor, L., Kela, I., Getz, G., Givol, D., and Domany, E. (2005). Outcome signature genes in breast cancer: is there a unique set? Bioinformatics 21, 171-178. doi: 10.1093/bioinformatics/bth469.
    • (2005) Bioinformatics , vol.21 , pp. 171-178
    • Ein-Dor, L.1    Kela, I.2    Getz, G.3    Givol, D.4    Domany, E.5
  • 6
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • doi: 10.1073/pnas.0601231103
    • Ein-Dor, L., Zuk, O., and Domany, E. (2006). Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl. Acad. Sci. U.S.A. 103, 5923-5928. doi: 10.1073/pnas.0601231103.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 7
    • 77951726873 scopus 로고    scopus 로고
    • Gene expression studies using Affymetrix microarrays
    • FL: CRC Press.
    • Gohlmann, H., and Talloen, W. (2010). Gene expression studies using Affymetrix microarrays. Boca Raton, FL: CRC Press.
    • (2010) Boca Raton
    • Gohlmann, H.1    Talloen, W.2
  • 8
    • 70449553671 scopus 로고    scopus 로고
    • Meta-analysis of gene expression profiles related to relapse-free survival in 1,079 breast cancer patients
    • doi: 10.1007/s10549-008-0242-8
    • Györffy, B., and Schäfer, R. (2009). Meta-analysis of gene expression profiles related to relapse-free survival in 1,079 breast cancer patients. Breast Cancer Res. Treat. 118, 433-441. doi: 10.1007/s10549-008-0242-8.
    • (2009) Breast Cancer Res. Treat. , vol.118 , pp. 433-441
    • Györffy, B.1    Schäfer, R.2
  • 9
    • 75549090213 scopus 로고    scopus 로고
    • Kegg for representation and analysis of molecular networks involving diseases and drugs
    • doi: 10.1093/nar/gkp896
    • Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., and Hirakawa, M. (2010). Kegg for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res. 38(Database issue), D355-D360. doi: 10.1093/nar/gkp896.
    • (2010) Nucleic Acids Res. , vol.38 , Issue.DATABASE ISSUE
    • Kanehisa, M.1    Goto, S.2    Furumichi, M.3    Tanabe, M.4    Hirakawa, M.5
  • 10
    • 57149092133 scopus 로고    scopus 로고
    • Inferring pathway activity toward precise disease classification
    • doi: 10.1371/journal.pcbi.1000217
    • Lee, E., Chuang, H.-Y., Kim, J.-W., Ideker, T., and Lee, D. (2008). Inferring pathway activity toward precise disease classification. PLoS Comput. Biol. 4:e1000217. doi: 10.1371/journal.pcbi.1000217.
    • (2008) PLoS Comput. Biol. , vol.4
    • Lee, E.1    Chuang, H.-Y.2    Kim, J.-W.3    Ideker, T.4    Lee, D.5
  • 11
    • 77952332655 scopus 로고    scopus 로고
    • Incorporating gene co-expression network in identification of cancer prognosis markers
    • doi: 10.1186/1471-2105-11-271
    • Ma, S., Shi, M., Li, Y., Yi, D., and Shia, B.-C. (2010). Incorporating gene co-expression network in identification of cancer prognosis markers. BMC Bioinformatics 11:271. doi: 10.1186/1471-2105-11-271.
    • (2010) BMC Bioinformatics , vol.11 , pp. 271
    • Ma, S.1    Shi, M.2    Li, Y.3    Yi, D.4    Shia, B.-C.5
  • 12
    • 27644503675 scopus 로고    scopus 로고
    • Generank: using search engine technology for the analysis of microarray experiments
    • doi: 10.1186/1471-2105-6-233
    • Morrison, J. L., Breitling, R., Higham, D. J., and Gilbert, D. R. (2005). Generank: using search engine technology for the analysis of microarray experiments. BMC Bioinformatics 6:233. doi: 10.1186/1471-2105-6-233.
    • (2005) BMC Bioinformatics , vol.6 , pp. 233
    • Morrison, J.L.1    Breitling, R.2    Higham, D.J.3    Gilbert, D.R.4
  • 14
    • 77954168391 scopus 로고    scopus 로고
    • Effect of training-sample size and classification difficulty on the accuracy of genomic predictors
    • doi: 10.1186/bcr2468
    • Popovici, V., Chen, W., Gallas, B. G., Hatzis, C., Shi, W., Samuelson, F. W., et al. (2010). Effect of training-sample size and classification difficulty on the accuracy of genomic predictors. Breast Cancer Res 12, R5. doi: 10.1186/bcr2468.
    • (2010) Breast Cancer Res , vol.12
    • Popovici, V.1    Chen, W.2    Gallas, B.G.3    Hatzis, C.4    Shi, W.5    Samuelson, F.W.6
  • 16
    • 84860478431 scopus 로고    scopus 로고
    • A critical evaluation of network and pathway-based classifiers for outcome prediction in breast cancer
    • doi: 10.1371/journal.pone.0034796
    • Staiger, C., Cadot, S., Kooter, R., Dittrich, M., Müller, T., Klau, G. W., et al. (2012). A critical evaluation of network and pathway-based classifiers for outcome prediction in breast cancer. PLoS ONE 7:e34796. doi: 10.1371/journal.pone.0034796.
    • (2012) PLoS ONE , vol.7
    • Staiger, C.1    Cadot, S.2    Kooter, R.3    Dittrich, M.4    Müller, T.5    Klau, G.W.6
  • 17
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
    • doi: 10.1073/pnas.0506580102
    • Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545-15550. doi: 10.1073/pnas.0506580102.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 15545-15550
    • Subramanian, A.1    Tamayo, P.2    Mootha, V.K.3    Mukherjee, S.4    Ebert, B.L.5    Gillette, M.A.6
  • 18
    • 59849125136 scopus 로고    scopus 로고
    • Dynamic modularity in protein interaction networks predicts breast cancer outcome
    • doi: 10.1038/nbt.1522
    • Taylor, I. W., Linding, R., Warde-Farley, D., Liu, Y., Pesquita, C., Faria, D., et al. (2009). Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat. Biotechnol. 27, 199-204. doi: 10.1038/nbt.1522.
    • (2009) Nat. Biotechnol. , vol.27 , pp. 199-204
    • Taylor, I.W.1    Linding, R.2    Warde-Farley, D.3    Liu, Y.4    Pesquita, C.5    Faria, D.6
  • 19
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • doi: 10.1038/415530a
    • van't Veer, L. J., Dai, H., Van De Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., et al. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530-536. doi: 10.1038/415530a.
    • (2002) Nature , vol.415 , pp. 530-536
    • van't Veer, L.J.1    Dai, H.2    Van De Vijver, M.J.3    He, Y.D.4    Hart, A.A.5    Mao, M.6
  • 20
    • 13844310310 scopus 로고    scopus 로고
    • Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer
    • doi: 10.1016/S0140-6736(05)17947-1
    • Wang, Y., Klijn, J. G. M., Zhang, Y., Sieuwerts, A. M., Look, M. P., Yang, F., et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365, 671-679. doi: 10.1016/S0140-6736(05)17947-1.
    • (2005) Lancet , vol.365 , pp. 671-679
    • Wang, Y.1    Klijn, J.G.M.2    Zhang, Y.3    Sieuwerts, A.M.4    Look, M.P.5    Yang, F.6
  • 21
    • 27544459288 scopus 로고    scopus 로고
    • A protocol for building and evaluating predictors of disease state based on microarray data
    • doi: 10.1093/bioinformatics/bti429
    • Wessels, L. F. A., Reinders, M. J. T., Hart, A. A. M., Veenman, C. J., Dai, H., He, Y. D., et al. (2005). A protocol for building and evaluating predictors of disease state based on microarray data. Bioinformatics 21, 3755-3762. doi: 10.1093/bioinformatics/bti429.
    • (2005) Bioinformatics , vol.21 , pp. 3755-3762
    • Wessels, L.F.A.1    Reinders, M.J.T.2    Hart, A.A.M.3    Veenman, C.J.4    Dai, H.5    He, Y.D.6
  • 22
    • 84863677563 scopus 로고    scopus 로고
    • Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes
    • doi: 10.1371/journal.pcbi.1002511
    • Winter, C., Kristiansen, G., Kersting, S., Roy, J., Aust, D., Knösel, T., et al. (2012). Google goes cancer: improving outcome prediction for cancer patients by network-based ranking of marker genes. PLoS Comput. Biol. 8:e1002511. doi: 10.1371/journal.pcbi.1002511.
    • (2012) PLoS Comput. Biol. , vol.8
    • Winter, C.1    Kristiansen, G.2    Kersting, S.3    Roy, J.4    Aust, D.5    Knösel, T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.