메뉴 건너뛰기




Volumn , Issue , 2006, Pages 1-268

Grouping multidimensional data: Recent advances in clustering

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84892013223     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/3-540-28349-8     Document Type: Book
Times cited : (72)

References (465)
  • 1
    • 84892116395 scopus 로고    scopus 로고
    • Available at http://www.cs.umn.edu/~karypis/cluto/files/datasets.tar.gz
  • 2
    • 84892063651 scopus 로고    scopus 로고
    • Available at ftp://ftp.cs.cornell.edu/pub/smart
  • 3
    • 84892039728 scopus 로고    scopus 로고
    • Doc2mat. Available at www-users.cs.umn.edu/karypis/cluto/files/doc2mat-1. 0.tar.gz
  • 4
    • 84892088553 scopus 로고    scopus 로고
    • General Text Parser. Available at http://www.cs.utk. edu/lsi/soft.html
    • General Text Parser
  • 6
    • 84892121062 scopus 로고    scopus 로고
    • The Lemur Toolkit. Available at http://www-2.cs.cmu.edu/lemur/
  • 7
    • 84892039650 scopus 로고    scopus 로고
    • MATLAB: The Language of Technical Computing. In http://www.mathworks.com/ products/matlab/
  • 8
    • 84892098569 scopus 로고    scopus 로고
    • Mc Toolkit. Available at http://www.cs.utexas.edu/users/dml/software/mc/
  • 9
    • 84892113632 scopus 로고    scopus 로고
    • Telcordia Latent Semantic Indexing (LSI) Demo Machine. Available at http://lsi.research.telcordia.com/
    • Demo Machine
  • 13
    • 0039253822 scopus 로고    scopus 로고
    • Finding generalized projected clusters in high dimensional spaces
    • C.C. Aggarwal and P.S. Yu. Finding generalized projected clusters in high dimensional spaces. Sigmod Record, 29(2):70-81, 2000
    • (2000) Sigmod Record , vol.29 , Issue.2 , pp. 70-81
    • Aggarwal, C.C.1    Yu, P.S.2
  • 15
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • Seattle, Washington, USA
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In Proceedings of ACM SIGMOD, pages 94-105, Seattle, Washington, USA, 1998
    • (1998) Proceedings of ACM SIGMOD , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 16
    • 0029478402 scopus 로고
    • A tabu search approach to the clustering problem
    • K.S. Al-Sultan. A tabu search approach to the clustering problem. Pattern Recognition, 28(9):1443-1451, 1995
    • (1995) Pattern Recognition , vol.28 , Issue.9 , pp. 1443-1451
    • Al-Sultan, K.S.1
  • 17
    • 0004190826 scopus 로고
    • Number 07-044 in Sage University Paper Series on Quantitative Applications in the Social Sciences. Sage, Beverly Hills
    • M.S. Aldenderfer and R.K. Blashfield. Cluster Analysis. Number 07-044 in Sage University Paper Series on Quantitative Applications in the Social Sciences. Sage, Beverly Hills, 1984
    • (1984) Cluster Analysis
    • Aldenderfer, M.S.1    Blashfield, R.K.2
  • 18
    • 0343536626 scopus 로고
    • PhD thesis, Department of Computer Science, Cornell University, January
    • J. Allan. Automatic Hypertext Construction. PhD thesis, Department of Computer Science, Cornell University, January 1995
    • (1995) Automatic Hypertext Construction
    • Allan, J.1
  • 22
    • 0033651656 scopus 로고    scopus 로고
    • Latent semantic space: Iterative scaling improves precision of interdocument similarity measurement
    • R. Ando. Latent semantic space: iterative scaling improves precision of interdocument similarity measurement. In Proceedings of the 23rd ACM Conference of SIGIR, pages 216-223, 2000
    • (2000) Proceedings of the 23rd ACM Conference of SIGIR , pp. 216-223
    • Ando, R.1
  • 24
    • 0001784651 scopus 로고    scopus 로고
    • An overview of combinatorial data analysis
    • P. Arabie, L.J. Hubert, and G.D. Soete, editors, World Scientific Publishing Co., Singapore
    • P. Arabie and L.J. Hubert. An overview of combinatorial data analysis. In P. Arabie, L.J. Hubert, and G.D. Soete, editors, Clustering and Classification, pages 5-63, World Scientific Publishing Co., Singapore, 1996
    • (1996) Clustering and Classification , pp. 5-63
    • Arabie, P.1    Hubert, L.J.2
  • 26
    • 84976489145 scopus 로고    scopus 로고
    • Generating, visualizing and evaluating high-quality clusters for information organization
    • E.V. Munson, C. Nicholas, and D. Wood, editors, of Lecture Notes in Computer Science, Springer, Berlin Heidelberg New York
    • J. Aslam, K. Pelekhov, and D. Rus. Generating, visualizing and evaluating high-quality clusters for information organization. In E.V. Munson, C. Nicholas, and D. Wood, editors, Principles of Digital Document Processing: 4th International Workshop, volume 1481 of Lecture Notes in Computer Science, pages 53-69, Springer, Berlin Heidelberg New York, 1998
    • (1998) Principles of Digital Document Processing: 4th International Workshop , vol.1481 , pp. 53-69
    • Aslam, J.1    Pelekhov, K.2    Rus, D.3
  • 27
    • 84884163172 scopus 로고    scopus 로고
    • Static and dynamic information organization with star clusters
    • G. Gardarin, J. French, N. Pissinou, K. Makki, and L. Bouganim, editors, ACM Press, New York, November
    • J. Aslam, K. Pelekhov, and D. Rus. Static and dynamic information organization with star clusters. In G. Gardarin, J. French, N. Pissinou, K. Makki, and L. Bouganim, editors, Proceedings of the 7th International Conference on Information and Knowledge Management, pages 208-217, ACM Press, New York, November 1998
    • (1998) Proceedings of the 7th International Conference on Information and Knowledge Management , pp. 208-217
    • Aslam, J.1    Pelekhov, K.2    Rus, D.3
  • 31
    • 4644233828 scopus 로고    scopus 로고
    • The star clustering algorithm for static and dynamic information organization
    • J.A. Aslam, E. Pelekhov, and D. Rus. The star clustering algorithm for static and dynamic information organization. Journal of Graph Algorithms and Applications, 8(1):95-129, 2004
    • (2004) Journal of Graph Algorithms and Applications , vol.8 , Issue.1 , pp. 95-129
    • Aslam, J.A.1    Pelekhov, E.2    Rus, D.3
  • 34
    • 4043122666 scopus 로고    scopus 로고
    • The log-quadratic proximal methodology in convex optimization algorithms and variational inequalities
    • P. Daniel, F. Gianessi, and A. Maugeri, editors, Kluwer, Dordrecht
    • A. Auslender and M. Teboulle. The log-quadratic proximal methodology in convex optimization algorithms and variational inequalities. In P. Daniel, F. Gianessi, and A. Maugeri, editors, Equilibrium Problems and Variational Models, Nonconvex Optimization and Its Applications, volume 68, Kluwer, Dordrecht, 2003
    • (2003) Equilibrium Problems and Variational Models, Nonconvex Optimization and Its Applications , vol.68
    • Auslender, A.1    Teboulle, M.2
  • 35
    • 0033358882 scopus 로고    scopus 로고
    • Interior proximal and multiplier methods based on second order homogeneous kernels
    • A. Auslender, M. Teboulle, and S. Ben-Tiba. Interior proximal and multiplier methods based on second order homogeneous kernels. Mathematics of Operations Research, 24:645-668, 1999
    • (1999) Mathematics of Operations Research , vol.24 , pp. 645-668
    • Auslender, A.1    Teboulle, M.2    Ben-Tiba, S.3
  • 36
    • 38049103082 scopus 로고
    • A near-optimal initial seed value selection in κ-means algorithm using a genetic algorithm
    • G.P. Babu and M.N. Murty. A near-optimal initial seed value selection in κ-means algorithm using a genetic algorithm. Pattern Recognition Letters, 14(10):763-769, 1993
    • (1993) Pattern Recognition Letters , vol.14 , Issue.10 , pp. 763-769
    • Babu, G.P.1    Murty, M.N.2
  • 37
    • 0028667333 scopus 로고
    • Clustering with evolution strategies
    • G.P. Babu and M.N. Murty. Clustering with evolution strategies. Pattern Recognition, 27(2):321-329, 1994
    • (1994) Pattern Recognition , vol.27 , Issue.2 , pp. 321-329
    • Babu, G.P.1    Murty, M.N.2
  • 38
    • 0002820059 scopus 로고
    • Introduction to data structures and algorithms related to information retrieval
    • W.B. Frakes and R. Baeza-Yates, editors, Prentice-Hall, Englewood Cliffs, NJ
    • R. Baeza-Yates. Introduction to data structures and algorithms related to information retrieval. In W.B. Frakes and R. Baeza-Yates, editors, Information Retrieval, Data Structures and Algorithms, pages 13-27, Prentice-Hall, Englewood Cliffs, NJ, 1992
    • (1992) Information Retrieval, Data Structures and Algorithms , pp. 13-27
    • Baeza-Yates, R.1
  • 39
    • 33747652401 scopus 로고    scopus 로고
    • Searching large text collections
    • J. Abello, P. Pardalos, and M. Resende, editors, Kluwer, Dordrecht
    • R. Baeza-Yates, A. Moffat, and G. Navarro. Searching large text collections. In J. Abello, P. Pardalos, and M. Resende, editors, Handbook of Massive Data Sets, pages 195-244, Kluwer, Dordrecht, 2002
    • (2002) Handbook of Massive Data Sets , pp. 195-244
    • Baeza-Yates, R.1    Moffat, A.2    Navarro, G.3
  • 41
    • 0032264186 scopus 로고    scopus 로고
    • Distributional clustering of words for text classification
    • Melbourne, Australia
    • L.D. Baker and A. McCallum. Distributional clustering of words for text classification. In ACM SIGIR, pages 96-103, Melbourne, Australia, 1998
    • (1998) ACM SIGIR , pp. 96-103
    • Baker, L.D.1    McCallum, A.2
  • 44
    • 4644337329 scopus 로고    scopus 로고
    • On scaling up balanced clustering algorithms
    • Arlington, VA, USA
    • A. Banerjee and J. Ghosh. On scaling up balanced clustering algorithms. In Proceedings of the 2nd SIAM ICDM, pages 333-349, Arlington, VA, USA, 2002
    • (2002) Proceedings of the 2nd SIAM ICDM , pp. 333-349
    • Banerjee, A.1    Ghosh, J.2
  • 48
    • 0027453616 scopus 로고
    • Model-based gaussian and non-gaussian clustering
    • J. Banfield and A Raftery. Model-based gaussian and non-gaussian clustering. Biometrics, 49:803-821, 1993
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.1    Raftery, A.2
  • 49
    • 0034592785 scopus 로고    scopus 로고
    • Using the fractal dimension to cluster datasets
    • Boston, MA, USA
    • D. Barbara and P Chen. Using the fractal dimension to cluster datasets. In Proceedings of the 6th ACM SIGKDD, pages 260-264, Boston, MA, USA, 2000
    • (2000) Proceedings of the 6th ACM SIGKDD , pp. 260-264
    • Barbara, D.1    Chen, P.2
  • 50
    • 0034592798 scopus 로고    scopus 로고
    • Automating exploratory data analysis for efficient data mining
    • Boston, MA, USA
    • J. Becher, P. Berkhin, and E. Freeman. Automating exploratory data analysis for efficient data mining. In Proceedings of the 6th ACM SIGKDD, pages 424-429, Boston, MA, USA, 2000
    • (2000) Proceedings of the 6th ACM SIGKDD , pp. 424-429
    • Becher, J.1    Berkhin, P.2    Freeman, E.3
  • 53
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • The MIT Press, Cambridge, MA
    • M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In Advances in Neural Information Processing System, pages 585-591, The MIT Press, Cambridge, MA, 2002
    • (2002) Advances in Neural Information Processing System , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 57
    • 0032094513 scopus 로고    scopus 로고
    • The pyramid-technique: Towards breaking the curse of dimensionality
    • Seattle, WA, USA
    • S. Berchtold, C. Böhm, and H.-P. Kriegel. The pyramid-technique: towards breaking the curse of dimensionality. In Proceedings of the ACM SIGMOD Conference, pages 142-153, Seattle, WA, USA, 1998
    • (1998) Proceedings of the ACM SIGMOD Conference , pp. 142-153
    • Berchtold, S.1    Böhm, C.2    Kriegel, H.-P.3
  • 60
    • 0003490106 scopus 로고    scopus 로고
    • Understanding search engines
    • M. Berry and M. Browne. Understanding Search Engines, SIAM, 1999
    • (1999) SIAM
    • Berry, M.1    Browne, M.2
  • 61
    • 0029546874 scopus 로고
    • Using linear algebra for intelligent information retrieval
    • M.W. Berry, S.T. Dumais, and G.W. O'Brien. Using linear algebra for intelligent information retrieval. SIAM Review, 37(4):573-595, 1995
    • (1995) SIAM Review , vol.37 , Issue.4 , pp. 573-595
    • Berry, M.W.1    Dumais, S.T.2    O'brien, G.W.3
  • 63
    • 0032624581 scopus 로고    scopus 로고
    • Matrices, vector spaces, and information retrieval
    • June
    • M.W. Berry, Z. Drmac, and E.R. Jessup. Matrices, vector spaces, and information retrieval. SIAM Review, 41(2):335-362, June 1999
    • (1999) SIAM Review , vol.41 , Issue.2 , pp. 335-362
    • Berry, M.W.1    Drmac, Z.2    Jessup, E.R.3
  • 66
    • 0043091624 scopus 로고    scopus 로고
    • Sparse matrix reordering schemes for browsing hypertext
    • J. Renegar, M. Shub, and S. Smale, editors, of Lectures in Applied Mathematics (LAM), American Mathematical Society, Providence, RI
    • M.W. Berry, B. Hendrickson, and P. Raghavan. Sparse matrix reordering schemes for browsing hypertext. In J. Renegar, M. Shub, and S. Smale, editors, The Mathematics of Numerical Analysis, volume 32 of Lectures in Applied Mathematics (LAM), pages 99-123. American Mathematical Society, Providence, RI, 1996
    • (1996) The Mathematics of Numerical Analysis , vol.32 , pp. 99-123
    • Berry, M.W.1    Hendrickson, B.2    Raghavan, P.3
  • 67
    • 0003713964 scopus 로고    scopus 로고
    • Athena Scientific, Belmont, MA, 2nd edition
    • D.P. Bertsekas. Nonlinear Programming, Athena Scientific, Belmont, MA, 2nd edition, 1999
    • (1999) Nonlinear Programming
    • Bertsekas, D.P.1
  • 71
    • 26844561093 scopus 로고    scopus 로고
    • Thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in the Department of Physics at Brown University
    • B.S. Blais. The Role of the Environment in Synaptic Plasticity: Towards an Understanding of Learning and Memory. Thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in the Department of Physics at Brown University, http://web.bryant.edu/bblais/pdf/chap-introduction. pdf, 1998
    • (1998) The Role of the Environment in Synaptic Plasticity: Towards An Understanding of Learning and Memory
    • Blais, B.S.1
  • 73
    • 0043174097 scopus 로고    scopus 로고
    • Probability models in partitional cluster analysis
    • A. Ferligoj and A. Kramberger, editors, Slovenia
    • H.H. Bock. Probability models in partitional cluster analysis. In A. Ferligoj and A. Kramberger, editors, Developments in Data Analysis, pages 3-25, Slovenia, 1996
    • (1996) Developments in Data Analysis , pp. 3-25
    • Bock, H.H.1
  • 76
    • 22644451496 scopus 로고    scopus 로고
    • Principal direction divisive partitioning
    • D.L. Boley. Principal direction divisive partitioning. Data Mining and Knowledge Discovery, 2(4):325-344, 1998
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 325-344
    • Boley, D.L.1
  • 79
    • 0033421955 scopus 로고    scopus 로고
    • A characterization of principal components for projection pursuit
    • R.J. Bolton and W.J. Krzanowski. A characterization of principal components for projection pursuit. The American Statistician, 53(2):108-109, 1999
    • (1999) The American Statistician , vol.53 , Issue.2 , pp. 108-109
    • Bolton, R.J.1    Krzanowski, W.J.2
  • 81
    • 85153959666 scopus 로고
    • Convergence properties of the K-means algorithms
    • G. Tesauro and D. Touretzky, editors, The MIT Press, Cambridge, MA
    • L. Bottou and Y. Bengio. Convergence properties of the K-means algorithms. In G. Tesauro and D. Touretzky, editors, Advances in Neural Information Processing Systems 7, pages 585-592, The MIT Press, Cambridge, MA, 1995
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 585-592
    • Bottou, L.1    Bengio, Y.2
  • 82
    • 0040979817 scopus 로고
    • Determining the number of component clusters in the standard multivariate normal mixture model using model-selection criteria
    • University of Illinois, Chicago, IL
    • H. Bozdogan. Determining the number of component clusters in the standard multivariate normal mixture model using model-selection criteria. Technical Report UIC/DQM/A83-1, University of Illinois, Chicago, IL, 1983
    • (1983) Technical Report UIC/DQM/A83-1
    • Bozdogan, H.1
  • 87
    • 0004990788 scopus 로고    scopus 로고
    • Mathematical programming for data mining: Formulations and challenges
    • P.S. Bradley, M. Fayyad, and O.L. Mangasarian. Mathematical programming for data mining: formulations and challenges. INFORMS Journal of Computing, 11:217-238, 1999
    • (1999) INFORMS Journal of Computing , vol.11 , pp. 217-238
    • Bradley, P.S.1    Fayyad, M.2    Mangasarian, O.L.3
  • 88
    • 49949144765 scopus 로고
    • A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming
    • L.M. Bregman. A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics., 7:200-217, 1967
    • (1967) USSR Computational Mathematics and Mathematical Physics. , vol.7 , pp. 200-217
    • Bregman, L.M.1
  • 91
    • 35048840003 scopus 로고
    • A practical application of simulated annealing to clustering
    • University of Virginia
    • D. Brown and C. Huntley. A practical application of simulated annealing to clustering. Technical Report IPC-TR-91-003, University of Virginia, 1991
    • (1991) Technical Report IPC-TR-91-003
    • Brown, D.1    Huntley, C.2
  • 92
    • 0005098442 scopus 로고    scopus 로고
    • Empirical risk approximation: An induction principle for unsupervised learning
    • Institut for Informatik III, Universitat Bonn
    • J. Buhmann. Empirical risk approximation: an induction principle for unsupervised learning. Technical Report IAI-TR-98-3, Institut for Informatik III, Universitat Bonn, 1998
    • (1998) Technical Report IAI-TR , pp. 98-103
    • Buhmann, J.1
  • 94
    • 0346869318 scopus 로고    scopus 로고
    • A general probabilistic framework for clustering individuals
    • University of California, Irvine
    • I. Cadez, S. Gaffney, and P. Smyth. A general probabilistic framework for clustering individuals. Technical Report UCI-ICS 00-09, University of California, Irvine, 2000
    • (2000) Technical Report UCI-ICS 00-09
    • Cadez, I.1    Gaffney, S.2    Smyth, P.3
  • 95
    • 0035789293 scopus 로고    scopus 로고
    • Probabilistic modeling of transactional data with applications to profiling, visualization, and prediction
    • San Francisco, CA, USA
    • I. Cadez, P. Smyth, and H. Mannila. Probabilistic modeling of transactional data with applications to profiling, visualization, and prediction. In Proceedings of the 7th ACM SIGKDD, pages 37-46, San Francisco, CA, USA, 2001
    • (2001) Proceedings of the 7th ACM SIGKDD , pp. 37-46
    • Cadez, I.1    Smyth, P.2    Mannila, H.3
  • 97
    • 0026408256 scopus 로고
    • Fuzzy art: Fast stable learning and categorization of analog patterns by an adaptive resonance system
    • G.A. Carpenter, S. Grossberg, and D.B. Rosen. Fuzzy art: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks, 4:759-771, 1991
    • (1991) Neural Networks , vol.4 , pp. 759-771
    • Carpenter, G.A.1    Grossberg, S.2    Rosen, D.B.3
  • 98
    • 0004016553 scopus 로고    scopus 로고
    • A review of dimension reduction techniques
    • Department of Computer Science, University of Sheffield, January
    • M.A. Carreira-Perpian. A review of dimension reduction techniques. Technical Report CS-96-09, Department of Computer Science, University of Sheffield, January 1997
    • (1997) Technical Report CS-96-09
    • Carreira-Perpian, M.A.1
  • 99
    • 34249850335 scopus 로고    scopus 로고
    • Hot-miner: Discovering hot topics from dirty text
    • M. Castellanos. Hot-miner: discovering hot topics from dirty text. In Berry [65], pages 123-157
    • Berry , vol.65 , pp. 123-157
    • Castellanos, M.1
  • 100
    • 0001626339 scopus 로고
    • A classification em algorithm for clustering and two stochastic versions
    • G. Celeux and G. Govaert. A classification EM algorithm for clustering and two stochastic versions. Computational Statistics and Data Analysis, 14:315, 1992
    • (1992) Computational Statistics and Data Analysis , vol.14 , pp. 315
    • Celeux, G.1    Govaert, G.2
  • 103
    • 0030242043 scopus 로고    scopus 로고
    • Scale based clustering using a radial basis function network
    • September
    • S.V. Chakaravathy and J. Ghosh. Scale based clustering using a radial basis function network. IEEE Transactions on Neural Networks, 2(5):1250-1261, September 1996
    • (1996) IEEE Transactions on Neural Networks , vol.2 , Issue.5 , pp. 1250-1261
    • Chakaravathy, S.V.1    Ghosh, J.2
  • 105
    • 0002607026 scopus 로고    scopus 로고
    • Bayesian classification (autoclass): Theory and results
    • U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, AAAI/MIT Press, Cambridge, MA
    • P. Cheeseman and J. Stutz. Bayesian classification (autoclass): theory and results. In U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery and Data Mining, pages 153-180, AAAI/MIT Press, Cambridge, MA, 1996
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 153-180
    • Cheeseman, P.1    Stutz, J.2
  • 107
    • 0000433247 scopus 로고
    • Convergence analysis of a proximal-like minimization algorithm using Bregman functions
    • G. Chen and M. Teboulle. Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM Journal of Optimization, 3:538-543, 1993
    • (1993) SIAM Journal of Optimization , vol.3 , pp. 538-543
    • Chen, G.1    Teboulle, M.2
  • 108
    • 0002646822 scopus 로고    scopus 로고
    • Entropy-based subspace clustering for mining numerical data
    • San Diego, CA, USA
    • C. Cheng, A. Fu, and Y. Zhang. Entropy-based subspace clustering for mining numerical data. In Proceedings of the 5th ACM SIGKDD, pages 84-93, San Diego, CA, USA, 1999
    • (1999) Proceedings of the 5th ACM SIGKDD , pp. 84-93
    • Cheng, C.1    Fu, A.2    Zhang, Y.3
  • 109
    • 0026396076 scopus 로고
    • An improved two-way partitioning algorithm with stable performance
    • December
    • C.K. Cheng and Y.-C.A. Wei. An improved two-way partitioning algorithm with stable performance. IEEE Transactions on CAD, 10:1502-1511, December 1991
    • (1991) IEEE Transactions on CAD , vol.10 , pp. 1502-1511
    • Cheng, C.K.1    Wei, Y.-C.A.2
  • 110
  • 111
    • 0035788889 scopus 로고    scopus 로고
    • A robust and scalable clustering algorithm for mixed type attributes in large database environments
    • San Francisco, CA, USA
    • T. Chiu, D. Fang, J. Chen, and Y. Wang. A robust and scalable clustering algorithm for mixed type attributes in large database environments. In Proceedings of the 7th ACM SIGKDD, pages 263-268, San Francisco, CA, USA, 2001
    • (2001) Proceedings of the 7th ACM SIGKDD , pp. 263-268
    • Chiu, T.1    Fang, D.2    Chen, J.3    Wang, Y.4
  • 114
    • 0000353884 scopus 로고
    • Explaining basic categories: Feature predictability and information
    • J. Corter and M. Gluck. Explaining basic categories: feature predictability and information. Psychological Bulletin, 111:291-303, 1992
    • (1992) Psychological Bulletin , vol.111 , pp. 291-303
    • Corter, J.1    Gluck, M.2
  • 117
    • 16244411897 scopus 로고    scopus 로고
    • An information-theoretical approach to clustering categorical databases using genetic algorithms
    • Arlington, VA, USA
    • D. Cristofor and D.A. Simovici. An information-theoretical approach to clustering categorical databases using genetic algorithms. In 2nd SIAM ICDM, Workshop on Clustering High Dimensional Data, Arlington, VA, USA, 2002
    • (2002) 2nd SIAM ICDM, Workshop on Clustering High Dimensional Data
    • Cristofor, D.1    Simovici, D.A.2
  • 118
    • 0017551537 scopus 로고
    • Clustering large files of documents using the single-link method
    • November
    • W.B. Croft. Clustering large files of documents using the single-link method. Journal of the American Society for Information Science, pages 189-195, November 1977
    • (1977) Journal of the American Society for Information Science , pp. 189-195
    • Croft, W.B.1
  • 119
    • 0000489740 scopus 로고
    • Information-type measures of difference of probability distributions and indirect observations
    • I. Csiszar. Information-type measures of difference of probability distributions and indirect observations. Studia Scientiarum Matematicarum Hungar, 2:299-318, 1967
    • (1967) Studia Scientiarum Matematicarum Hungar , vol.2 , pp. 299-318
    • Csiszar, I.1
  • 123
    • 0002546287 scopus 로고
    • Efficient algorithms for agglomerative hierarchical clustering methods
    • W. Day and H. Edelsbrunner. Efficient algorithms for agglomerative hierarchical clustering methods. Journal of Classification, 1(7):7-24, 1984
    • (1984) Journal of Classification , vol.1 , Issue.7 , pp. 7-24
    • Day, W.1    Edelsbrunner, H.2
  • 125
    • 0001765146 scopus 로고
    • An efficient algorithm for a complete link method
    • D. Defays. An efficient algorithm for a complete link method. The Computer Journal, 20:364-366, 1977
    • (1977) The Computer Journal , vol.20 , pp. 364-366
    • Defays, D.1
  • 129
    • 0003219068 scopus 로고    scopus 로고
    • Efficient clustering of very large document collections
    • R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu, editors, Kluwer, Dordrecht
    • I.S. Dhillon, J. Fan, and Y. Guan. Efficient clustering of very large document collections. In R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu, editors, Data Mining for Scientific and Engineering Applications, pages 357-381, Kluwer, Dordrecht, 2001
    • (2001) Data Mining for Scientific and Engineering Applications , pp. 357-381
    • Dhillon, I.S.1    Fan, J.2    Guan, Y.3
  • 131
    • 78149341301 scopus 로고    scopus 로고
    • Iterative clustering of high dimensional text data augmented by local search
    • IEEE Computer Society Press, Los Alamitos, CA
    • I.S. Dhillon, Y. Guan, and J. Kogan. Iterative clustering of high dimensional text data augmented by local search. In Proceedings of the 2002 IEEE International Conference on Data Mining, pages 131-138, IEEE Computer Society Press, Los Alamitos, CA, 2002
    • (2002) Proceedings of the 2002 IEEE International Conference on Data Mining , pp. 131-138
    • Dhillon, I.S.1    Guan, Y.2    Kogan, J.3
  • 133
    • 0242652097 scopus 로고    scopus 로고
    • Feature selection and document clustering
    • M.W. Berry, editor, Springer, Berlin Heildelberg New York
    • I.S. Dhillon, J. Kogan, and C. Nicholas. Feature selection and document clustering. In M.W. Berry, editor, A Comprehensive Survey of Text Mining, pages 73-100, Springer, Berlin Heildelberg New York, 2003
    • (2003) A Comprehensive Survey of Text Mining , pp. 73-100
    • Dhillon, I.S.1    Kogan, J.2    Nicholas, C.3
  • 135
    • 0343586025 scopus 로고    scopus 로고
    • A parallel data-clustering algorithm for distributed memory multiprocessors
    • M.J. Zaki and C.T. Ho, editors, Springer, Berlin Heildelberg New York, Presented at the 1999 Large-Scale Parallel KDD Systems Workshop, SanDiego, CA
    • I.S. Dhillon and D.S. Modha. A parallel data-clustering algorithm for distributed memory multiprocessors. In M.J. Zaki and C.T. Ho, editors, Large-Scale Parallel Data Mining, Lecture Notes in Artificial Intelligence, Volume 1759, pages 245-260, Springer, Berlin Heildelberg New York, 2000. Presented at the 1999 Large-Scale Parallel KDD Systems Workshop, SanDiego, CA.
    • (2000) Large-Scale Parallel Data Mining, Lecture Notes in Artificial Intelligence , vol.1759 , pp. 245-260
    • Dhillon, I.S.1    Modha, D.S.2
  • 136
    • 0034824884 scopus 로고    scopus 로고
    • Concept decompositions for large sparse text data using clustering
    • January, Also appears as IBM Research Report RJ 10147, July
    • I.S. Dhillon and D.S. Modha. Concept decompositions for large sparse text data using clustering. Machine Learning, 42(1):143-175, January 2001. Also appears as IBM Research Report RJ 10147, July 1999
    • (1999) Machine Learning , vol.42 , Issue.1 , pp. 143-175
    • Dhillon, I.S.1    Modha, D.S.2
  • 138
    • 0001493668 scopus 로고
    • Asymptotics of graphical projection pursuit
    • P. Diaconis and D. Freedman. Asymptotics of graphical projection pursuit. Annals of Statistics, 12:793-815, 1984
    • (1984) Annals of Statistics , vol.12 , pp. 793-815
    • Diaconis, P.1    Freedman, D.2
  • 141
    • 0002815587 scopus 로고    scopus 로고
    • A general method for scaling up machine learning algorithms and its application to clustering
    • Morgan Kaufmann, San Fransisco, USA
    • P. Domingos and G. Hulten. A general method for scaling up machine learning algorithms and its application to clustering. In Proceedings of the 18th International Converence on Machine Learning, pages 106-113, Morgan Kaufmann, San Fransisco, USA, 2001
    • (2001) Proceedings of the 18th International Converence on Machine Learning , pp. 106-113
    • Domingos, P.1    Hulten, G.2
  • 142
    • 0001994373 scopus 로고
    • Cluster analysis and related issues
    • C.H. Chen, L.F. Pau, and P.S. Wang, editors, World Scientific, River Edge, NJ, USA
    • R.C. Dubes. Cluster analysis and related issues. In C.H. Chen, L.F. Pau, and P.S. Wang, editors, Handbook of Pattern Recognition and Computer Vision, pages 3-32, World Scientific, River Edge, NJ, USA, 1993
    • (1993) Handbook of Pattern Recognition and Computer Vision , pp. 3-32
    • Dubes, R.C.1
  • 145
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • S. Dudoit and J. Fridlyand. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology., 3(7), 2002
    • (2002) Genome Biology. , vol.3 , pp. 7
    • Dudoit, S.1    Fridlyand, J.2
  • 151
    • 23044519025 scopus 로고    scopus 로고
    • Spatial data mining: Database primitives, algorithms and efficient dbms support
    • M. Ester, A. Frommelt, H.-P. Kriegel, and J. Sander. Spatial data mining: database primitives, algorithms and efficient dbms support. Data Mining and Knowledge Discovery, 4(2-3):193-216, 2000
    • (2000) Data Mining and Knowledge Discovery , vol.4 , Issue.2-3 , pp. 193-216
    • Ester, M.1    Frommelt, A.2    Kriegel, H.-P.3    Sander, J.4
  • 152
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Portland, OR, USA
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the 2nd ACM SIGKDD, pages 226-231, Portland, OR, USA, 1996
    • (1996) Proceedings of the 2nd ACM SIGKDD , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 153
    • 78149330405 scopus 로고
    • A database interface for clustering in large spatial databases
    • Montreal, Canada
    • M. Ester, H.-P. Kriegel, and X. Xu. A database interface for clustering in large spatial databases. In Proceedings of the 1st ACM SIGKDD, pages 94-99, Montreal, Canada, 1995
    • (1995) Proceedings of the 1st ACM SIGKDD , pp. 94-99
    • Ester, M.1    Kriegel, H.-P.2    Xu, X.3
  • 155
    • 0003578015 scopus 로고
    • (3rd ed.), Edward Arnold, London, UK
    • B. Everitt. Cluster Analysis (3rd ed.), Edward Arnold, London, UK, 1993
    • (1993) Cluster Analysis
    • Everitt, B.1
  • 159
    • 0004140078 scopus 로고    scopus 로고
    • An analysis of recent work on clustering algorithms
    • University of Washington
    • D. Fasulo. An analysis of recent work on clustering algorithms. Technical Report UW-CSE01 -03-02, University of Washington, 1999
    • (1999) Technical Report UW-CSE01 -03-02
    • Fasulo, D.1
  • 161
    • 0000827674 scopus 로고
    • A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory
    • M. Fiedler. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czecheoslovak Mathematical Journal, 25(100):619-633, 1975
    • (1975) Czecheoslovak Mathematical Journal , vol.25 , Issue.100 , pp. 619-633
    • Fiedler, M.1
  • 162
    • 0343442766 scopus 로고
    • Knowledge acquisition via conceptual clustering
    • D. Fisher. Cobweb: knowledge acquisition via conceptual clustering. Machine Learning, 2:139-172, 1987
    • (1987) Machine Learning , vol.2 , pp. 139-172
    • Fisher. Cobweb, D.1
  • 164
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • D.H. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2:139-172, 1987
    • (1987) Machine Learning , vol.2 , pp. 139-172
    • Fisher, D.H.1
  • 165
    • 0029678997 scopus 로고    scopus 로고
    • Iterative optimization and simplification of hierarchical clustering
    • D.H. Fisher. Iterative optimization and simplification of hierarchical clustering. Journal of Artificial Intelligence Research, 4:147-179, 1996
    • (1996) Journal of Artificial Intelligence Research , vol.4 , pp. 147-179
    • Fisher, D.H.1
  • 166
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency vs. interpretability of classifications
    • E. Forgy. Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics, 21(3):768, 1965
    • (1965) Biometrics , vol.21 , Issue.3 , pp. 768
    • Forgy, E.1
  • 168
    • 23144457786 scopus 로고    scopus 로고
    • A non-parametric approach to web log analysis
    • Chicago, IL, USA
    • A. Foss, W. Wang, and O. Zaane. A non-parametric approach to web log analysis. In 1st SIAM ICDM, Workshop on Web Mining, pages 41-50, Chicago, IL, USA, 2001
    • (2001) 1st SIAM ICDM, Workshop on Web Mining , pp. 41-50
    • Foss, A.1    Wang, W.2    Zaane, O.3
  • 170
    • 0001918328 scopus 로고
    • Stemming algorithms
    • W. Frakes and R. Baeza-Yates, editors, Prentice Hall, New Jersey
    • W. Frakes. Stemming algorithms. In W. Frakes and R. Baeza-Yates, editors, Information Retrieval: Data Structures and Algorithms, pages 131-160, Prentice Hall, New Jersey, 1992
    • (1992) Information Retrieval: Data Structures and Algorithms , pp. 131-160
    • Frakes, W.1
  • 171
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • C. Fraley and A. Raftery. How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal, 41(8):578-588, 1998
    • (1998) The Computer Journal , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.2
  • 172
    • 0006441254 scopus 로고    scopus 로고
    • MCLUST: Software for model-based cluster and discriminant analysis
    • University of Washington
    • C. Fraley and A. Raftery. MCLUST: Software for model-based cluster and discriminant analysis. Technical Report 342, Department of Statistics, University of Washington, 1999
    • (1999) Technical Report 342, Department of Statistics
    • Fraley, C.1    Raftery, A.2
  • 173
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • C. Fraley and A.E. Raftery. How many clusters? Which clustering method? Answers via model-based cluster analysis. The Computer Journal. http://citeseer.nj.nec.com/fraley98how.htm, 1998
    • (1998) The Computer Journal
    • Fraley, C.1    Raftery, A.E.2
  • 174
    • 0032131702 scopus 로고    scopus 로고
    • Algorithms for model-based Gaussian hierarchical clustering
    • C. Fraley. Algorithms for model-based Gaussian hierarchical clustering. SIAM Journal on Scientific Computing, 20(1):270-281, 1999
    • (1999) SIAM Journal on Scientific Computing , vol.20 , Issue.1 , pp. 270-281
    • Fraley, C.1
  • 176
    • 0002109783 scopus 로고
    • An overview of predictive learning and function approximation
    • V. Cherkassky, J.H. Friedman, and H. Wechsler, editors, Springer, Berlin Heildelberg New York
    • J.H. Friedman. An overview of predictive learning and function approximation. In V. Cherkassky, J.H. Friedman, and H. Wechsler, editors, From Statistics to Neural Networks, Proceedings of the NATO/ASI Workshop, pages 1-61, Springer, Berlin Heildelberg New York, 1994
    • (1994) From Statistics to Neural Networks, Proceedings of the NATO/ASI Workshop , pp. 1-61
    • Friedman, J.H.1
  • 177
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • J.H. Friedman. On bias, variance, 0/1-loss, and the curse-of- dimensionality. Data Mining and Knowledge Discovery, 1:55-77, 1997
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 55-77
    • Friedman, J.H.1
  • 178
    • 0016102310 scopus 로고
    • A projection pursuit algorithm for exploratory data analysis
    • J.H. Friedman and J. W. Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers, C-23(9):881-890, 1974
    • (1974) IEEE Transactions on Computers , vol.C-23 , Issue.9 , pp. 881-890
    • Friedman, J.H.1    Tukey, J.W.2
  • 179
    • 0038082421 scopus 로고    scopus 로고
    • Applications of resampling methods to estimate the number of clusters and to improve the accuracy of a clustering method
    • J. Frilyand and S. Dudoit. Applications of resampling methods to estimate the number of clusters and to improve the accuracy of a clustering method. Statistics Berkeley Technical Report. No 600, 2001
    • (2001) Statistics Berkeley Technical Report. No 600
    • Frilyand, J.1    Dudoit, S.2
  • 181
    • 0002161595 scopus 로고    scopus 로고
    • CACTUS-clustering categorical data using summaries
    • San Diego, CA, USA
    • Ganti, Gehrke, and Ramakrishnan. CACTUS-clustering categorical data using summaries. In Proceedings of the 5th ACM SIGKDD, pages 73-83, San Diego, CA, USA, 1999
    • (1999) Proceedings of the 5th ACM SIGKDD , pp. 73-83
    • Ganti1    Gehrke2    Ramakrishnan3
  • 187
    • 2542613410 scopus 로고    scopus 로고
    • Scalable clustering
    • N. Ye, editor, Erlbaum, Mahawah, NJ
    • J. Ghosh. Scalable clustering. In N. Ye, editor, The Handbook of Data Mining, pages 247-277, Erlbaum, Mahawah, NJ, 2003
    • (2003) The Handbook of Data Mining , pp. 247-277
    • Ghosh, J.1
  • 189
    • 1842512506 scopus 로고
    • Sparse matrices in MATLAB: Design and implementation
    • Xerox Palo Alto Research Center
    • J.R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: design and implementation. Technical Report CSL 91-4, Xerox Palo Alto Research Center, 1991
    • (1991) Technical Report CSL 91-4
    • Gilbert, J.R.1    Moler, C.2    Schreiber, R.3
  • 196
    • 0242387333 scopus 로고    scopus 로고
    • MAFIA: Efficient and scalable subspace clustering for very large data sets
    • Northwestern University
    • S. Goil, H. Nagesh, and A. Choudhary. MAFIA: efficient and scalable subspace clustering for very large data sets. Technical Report CPDC-TR-9906-010, Northwestern University, 1999
    • (1999) Technical Report CPDC-TR-9906-010
    • Goil, S.1    Nagesh, H.2    Choudhary, A.3
  • 200
    • 0021938963 scopus 로고
    • Clustering to minimize the maximum intercluster distance
    • T.F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293-306, 1985
    • (1985) Theoretical Computer Science , vol.38 , pp. 293-306
    • Gonzalez, T.F.1
  • 201
    • 0036735386 scopus 로고    scopus 로고
    • Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma
    • G.J. Gordon et al. Translation of microarray data into clinically relevant cancer diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer Research, 62:4963-4967, 2002
    • (2002) Cancer Research , vol.62 , pp. 4963-4967
    • Gordon, G.J.1
  • 203
    • 21344435020 scopus 로고
    • Simultaneous clustering of rows and columns
    • G. Govaert. Simultaneous clustering of rows and columns. Control and Cybernetics, 24:437-458, 1995
    • (1995) Control and Cybernetics , vol.24 , pp. 437-458
    • Govaert, G.1
  • 204
    • 0018183618 scopus 로고
    • Agglomerative clustering using the concept of mutual nearest neighborhood
    • K.C. Gowda and G. Krishna. Agglomerative clustering using the concept of mutual nearest neighborhood. Pattern Recognition, 10:105-112, 1978
    • (1978) Pattern Recognition , vol.10 , pp. 105-112
    • Gowda, K.C.1    Krishna, G.2
  • 206
    • 33749356813 scopus 로고    scopus 로고
    • Spectral relaxation models and structure analysis for κ-way graph clustering and bi-clustering
    • Pennsylvania State University
    • M. Gu, H. Zha, C. Ding, X. He, and H. Simon. Spectral relaxation models and structure analysis for κ-way graph clustering and bi-clustering. Technical Report CSE-01-007, Pennsylvania State University, 2001
    • (2001) Technical Report CSE-01-007
    • Gu, M.1    Zha, H.2    Ding, C.3    He, X.4    Simon, H.5
  • 210
    • 84892085423 scopus 로고    scopus 로고
    • A scalable algorithm for clustering sequential data
    • Silicon Valley, CA, USA
    • V. Guralnik and G. Karypis. A scalable algorithm for clustering sequential data. In IEEE ICDM 2001, Silicon Valley, CA, USA, 2001
    • (2001) IEEE ICDM 2001
    • Guralnik, V.1    Karypis, G.2
  • 211
    • 0021615874 scopus 로고
    • R-trees: A dynamic index structure for spatial searching
    • Boston, MA, USA
    • A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proceedings of the ACM SIGMOD Conference, pages 47-57, Boston, MA, USA, 1984
    • (1984) Proceedings of the ACM SIGMOD Conference , pp. 47-57
    • Guttman, A.1
  • 212
    • 0026925324 scopus 로고
    • New spectral methods for ratio cut partitioning and clustering
    • L. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and clustering. IEEE Transactions on CAD, 11:1074-1085, 1992
    • (1992) IEEE Transactions on CAD , vol.11 , pp. 1074-1085
    • Hagen, L.1    Kahng, A.B.2
  • 214
    • 0000552128 scopus 로고
    • Polynomial projection pursuit
    • P. Hall. Polynomial projection pursuit. Annals of Statististics, 17:589-605, 1989
    • (1989) Annals of Statististics , vol.17 , pp. 589-605
    • Hall, P.1
  • 218
    • 0010415411 scopus 로고    scopus 로고
    • Spatial clustering methods in data mining: A survey. in H. Miller and J. Han, editors
    • Taylor and Francis, London
    • J. Han, M. Kamber, and A.K.H. Tung. Spatial clustering methods in data mining: a survey. In H. Miller and J. Han, editors, Geographic Data Mining and Knowledge Discovery, Taylor and Francis, London, 2001
    • (2001) Geographic Data Mining and Knowledge Discovery
    • Han, J.1    Kamber, M.2    Tung, A.K.H.3
  • 219
    • 0034819175 scopus 로고    scopus 로고
    • J-Means: A new local search heuristic for minimum sum of squares clustering
    • P. Hansen and N. Mladenovic J-Means: a new local search heuristic for minimum sum of squares clustering. Pattern Recognition, 34:405-413, 2001
    • (2001) Pattern Recognition , vol.34 , pp. 405-413
    • Hansen, P.1    Mladenovic, N.2
  • 221
    • 0035789288 scopus 로고    scopus 로고
    • Clustering spatial data using random walks
    • San Francisco, CA, USA
    • D. Harel and Y. Koren. Clustering spatial data using random walks. In Proceedings of the 7th ACM SIGKDD, pages 281-286, San Francisco, CA, USA, 2001
    • (2001) Proceedings of the 7th ACM SIGKDD , pp. 281-286
    • Harel, D.1    Koren, Y.2
  • 222
    • 33748888529 scopus 로고
    • Statistical theory in clustering
    • J. Hartigan. Statistical theory in clustering. Journal of Classification, 2:63-76, 1985
    • (1985) Journal of Classification , vol.2 , pp. 63-76
    • Hartigan, J.1
  • 223
    • 0001138328 scopus 로고
    • Algorithm as136: A κ-means clustering algorithm
    • J. Hartigan and M. Wong. Algorithm as136: a κ-means clustering algorithm. Applied Statistics, 28:100-108, 1979
    • (1979) Applied Statistics , vol.28 , pp. 100-108
    • Hartigan, J.1    Wong, M.2
  • 225
    • 0030381274 scopus 로고    scopus 로고
    • Reexamining the cluster hypothesis: Scatter/gather on retrieval results
    • M.A. Hearst and J.O. Pedersen. Reexamining the cluster hypothesis: Scatter/gather on retrieval results. In ACM SIGIR, pages 76-84, 1996
    • (1996) ACM SIGIR , pp. 76-84
    • Hearst, M.A.1    Pedersen, J.O.2
  • 226
    • 0038545418 scopus 로고    scopus 로고
    • Identification of web user traffic composition using multimodal clustering and information scent
    • Chicago, IL, USA
    • J. Heer and E. Chi. Identification of web user traffic composition using multimodal clustering and information scent. In 1st SIAM ICDM, Workshop on Web Mining, pages 51-58, Chicago, IL, USA, 2001
    • (2001) 1st SIAM ICDM, Workshop on Web Mining , pp. 51-58
    • Heer, J.1    Chi, E.2
  • 227
    • 0000063845 scopus 로고
    • An improved spectral graph partitioning algorithm for mapping parallel computations
    • B. Hendrickson and R. Leland. An improved spectral graph partitioning algorithm for mapping parallel computations. SIAM Journal on Scientific Computing, 16(2):452-469, 1995
    • (1995) SIAM Journal on Scientific Computing , vol.16 , Issue.2 , pp. 452-469
    • Hendrickson, B.1    Leland, R.2
  • 228
    • 85030313899 scopus 로고
    • OHSUMED: An interactive retrieval evaluation and new large test collection for research
    • W. Hersh, C. Buckley, T.J. Leone, and D. Hickam. OHSUMED: an interactive retrieval evaluation and new large test collection for research. In SIGIR-94, pages 192-201, 1994
    • (1994) SIGIR-94 , pp. 192-201
    • Hersh, W.1    Buckley, C.2    Leone, T.J.3    Hickam, D.4
  • 229
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering large multimedia databases with noise
    • New York, NY, USA
    • A. Hinneburg and D. Keim. An efficient approach to clustering large multimedia databases with noise. In Proceedings of the 4th ACM SIGKDD, pages 58-65, New York, NY, USA, 1998
    • (1998) Proceedings of the 4th ACM SIGKDD , pp. 58-65
    • Hinneburg, A.1    Keim, D.2
  • 230
    • 0000835955 scopus 로고    scopus 로고
    • Optimal grid-clustering: Towards breaking the curse of dimensionality in high-dimensional clustering
    • Edinburgh, Scotland, USA
    • A. Hinneburg and D. Keim. Optimal grid-clustering: towards breaking the curse of dimensionality in high-dimensional clustering. In Proceedings of the 25th Conference on VLDB, pages 506-517, Edinburgh, Scotland, USA, 1999
    • (1999) Proceedings of the 25th Conference on VLDB , pp. 506-517
    • Hinneburg, A.1    Keim, D.2
  • 231
    • 0022753024 scopus 로고
    • A unified approach to approximation algorithms for bottleneck problems
    • D.S. Hochbaum and D.B. Shmoys. A unified approach to approximation algorithms for bottleneck problems. Journal of ACM, 33(3):533-550, 1986
    • (1986) Journal of ACM , vol.33 , Issue.3 , pp. 533-550
    • Hochbaum, D.S.1    Shmoys, D.B.2
  • 234
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the κ-means algorithm for clustering large data sets with categorical values
    • Z. Huang. Extensions to the κ-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2(3):283-304, 1998
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 235
    • 0000263797 scopus 로고
    • Projection pursuit
    • P.J. Huber. Projection pursuit. Annals of Statistics, 13:435-475, 1985
    • (1985) Annals of Statistics , vol.13 , pp. 435-475
    • Huber, P.J.1
  • 237
    • 33845435132 scopus 로고    scopus 로고
    • New approximations of differential entropy for independent component analysis and projection pursuit
    • A. Hyvärinen. New approximations of differential entropy for independent component analysis and projection pursuit. In Advances in Neural Information Processing Systems, 10:273-279, 1998
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 273-279
    • Hyvärinen, A.1
  • 239
    • 0026436313 scopus 로고
    • Objective function formulation of the bcm theory of visual cortical plasticity
    • N. Intrator and L. Cooper. Objective function formulation of the bcm theory of visual cortical plasticity. Neural Networks, 5:3-17, 1992
    • (1992) Neural Networks , vol.5 , pp. 3-17
    • Intrator, N.1    Cooper, L.2
  • 240
    • 84898982939 scopus 로고    scopus 로고
    • Exploiting generative models in discriminative classifiers. in M.S. Kearns, S.A. Solla, and D.D. Cohn, editors
    • MIT Press, Cambridge, MA
    • T.S. Jaakkola and D. Haussler. Exploiting generative models in discriminative classifiers. In M.S. Kearns, S.A. Solla, and D.D. Cohn, editors, Advances in Neural Information Processing Systems-11, volume 11, pages 487-493, MIT Press, Cambridge, MA, 1999
    • (1999) Advances in Neural Information Processing Systems-11 , vol.11 , pp. 487-493
    • Jaakkola, T.S.1    Haussler, D.2
  • 244
    • 0030104449 scopus 로고    scopus 로고
    • Artificial neural networks: A tutorial
    • A.K. Jain and J. Mao. Artificial neural networks: a tutorial. IEEE Computer, 29(3):31-44, 1996
    • (1996) IEEE Computer , vol.29 , Issue.3 , pp. 31-44
    • Jain, A.K.1    Mao, J.2
  • 247
    • 0015680655 scopus 로고
    • Clustering using a similarity measure based on shared nearest neighbors
    • R.A. Jarvis and E.A. Patrick. Clustering using a similarity measure based on shared nearest neighbors. IEEE Transactions on Computers, C-22(11), 1973
    • (1973) IEEE Transactions on Computers , vol.C-22 , Issue.11
    • Jarvis, R.A.1    Patrick, E.A.2
  • 248
    • 30044450197 scopus 로고    scopus 로고
    • Feature selection and dualities in maximum entropy discrimination
    • Stanford, CA, USA
    • T. Jebara and T. Jaakkola. Feature selection and dualities in maximum entropy discrimination. In Proceedings of the 16th UIA Conference, Stanford, CA, USA, 2000
    • (2000) Proceedings of the 16th UIA Conference
    • Jebara, T.1    Jaakkola, T.2
  • 253
    • 0035789280 scopus 로고    scopus 로고
    • Generalized clustering, supervised learning, and data assignment
    • San Francisco, CA, USA
    • A. Kalton, P. Langley, K. Wagstaff, and J. Yoo. Generalized clustering, supervised learning, and data assignment. In Proceedings of the 7th ACM SIGKDD, pages 299-304, San Francisco, CA, USA, 2001
    • (2001) Proceedings of the 7th ACM SIGKDD , pp. 299-304
    • Kalton, A.1    Langley, P.2    Wagstaff, K.3    Yoo, J.4
  • 254
    • 0035788895 scopus 로고    scopus 로고
    • Visualizing multi-dimensional clusters, trends, and outliers using star coordinates
    • San Francisco, CA, USA
    • E. Kandogan. Visualizing multi-dimensional clusters, trends, and outliers using star coordinates. In Proceedings of the 7th ACM SIGKDD, pages 107-116, San Francisco, CA, USA, 2001
    • (2001) Proceedings of the 7th ACM SIGKDD , pp. 107-116
    • Kandogan, E.1
  • 256
    • 0003037529 scopus 로고
    • Reducibility among combinatorial problems
    • editors Miller, R.E. and Thatcher, J.W, Plenum, New York
    • R.M. Karp. Reducibility among combinatorial problems, editors Miller, R.E. and Thatcher, J.W. In Complexity of Computer Computations, pages 85-103. Plenum, New York, 1972
    • (1972) Complexity of Computer Computations , pp. 85-103
    • Karp, R.M.1
  • 259
    • 0008690062 scopus 로고    scopus 로고
    • Concept indexing: A fast dimensionality reduction algorithm with applications to document retrieval and categorization
    • University of Minnesota, Minneapolis, MN, USA
    • G. Karypis and E.-H. Han. Concept indexing: a fast dimensionality reduction algorithm with applications to document retrieval and categorization. Technical Report TR-00-016, Department of Computer Science, University of Minnesota, Minneapolis, MN, USA, 2000
    • (2000) Technical Report TR-00-016, Department of Computer Science
    • Karypis, G.1    Han, E.-H.2
  • 260
    • 0032686723 scopus 로고    scopus 로고
    • CHAMELEON: Hierarchical clustering using dynamic modeling
    • G. Karypis, E.-H. Han, and V. Kumar. CHAMELEON: hierarchical clustering using dynamic modeling. IEEE Computer, 32(8):68-75, 1999
    • (1999) IEEE Computer , vol.32 , Issue.8 , pp. 68-75
    • Karypis, G.1    Han, E.-H.2    Kumar, V.3
  • 262
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM Journal of Scientific Computation, 20(1):359-392, 1999
    • (1999) SIAM Journal of Scientific Computation , vol.20 , Issue.1 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 266
    • 0002499892 scopus 로고    scopus 로고
    • An informationtheoretic analysis of hard and soft assignment methods for clustering
    • M. Kearns, Y. Mansour, and A. Ng. An informationtheoretic analysis of hard and soft assignment methods for clustering. In Proceedings of the 13th UAI, pages 282-293, 1997
    • (1997) Proceedings of the 13th UAI , pp. 282-293
    • Kearns, M.1    Mansour, Y.2    Ng, A.3
  • 269
    • 0035788925 scopus 로고    scopus 로고
    • Ensemble-index: A new approach to indexing large databases
    • San Francisco, CA, USA
    • E. Keogh, S. Chu, and M. Pazzani. Ensemble-index: a new approach to indexing large databases. In Proceedings of the 7th ACM SIGKDD, pages 117-125, San Francisco, CA, USA, 2001
    • (2001) Proceedings of the 7th ACM SIGKDD , pp. 117-125
    • Keogh, E.1    Chu, S.2    Pazzani, M.3
  • 270
    • 84990479742 scopus 로고
    • An efficient heuristic procedure for partitioning graphs
    • B.W. Kernighan and S. Lin. An efficient heuristic procedure for partitioning graphs. The Bell System Technical Journal, 49(2):291-307, 1970
    • (1970) The Bell System Technical Journal , vol.49 , Issue.2 , pp. 291-307
    • Kernighan, B.W.1    Lin, S.2
  • 273
    • 0002948319 scopus 로고    scopus 로고
    • Algorithms for mining distance-based outliers in large datasets
    • New York, NY, USA
    • E. Knorr and R. Ng. Algorithms for mining distance-based outliers in large datasets. In Proceedings of the 24h Conference on VLDB, pages 392-403, New York, NY, USA, 1998
    • (1998) Proceedings of the 24h Conference on VLDB , pp. 392-403
    • Knorr, E.1    Ng, R.2
  • 274
    • 0035789577 scopus 로고    scopus 로고
    • Robust space transformations for distancebased operations
    • San Francisco, CA, USA
    • E. Knorr, R. Ng, and R.H. Zamar. Robust space transformations for distancebased operations. In Proceedings of the 7th ACM SIGKDD, pages 126-135, San Francisco, CA, USA, 2001
    • (2001) Proceedings of the 7th ACM SIGKDD , pp. 126-135
    • Knorr, E.1    Ng, R.2    Zamar, R.H.3
  • 275
  • 276
    • 17144363720 scopus 로고    scopus 로고
    • Clustering large unstructured document sets
    • M.W. Berry, editor, SIAM
    • J. Kogan. Clustering large unstructured document sets. In M.W. Berry, editor, Computational Information Retrieval, pages 107-117, SIAM, 2000
    • (2000) Computational Information Retrieval , pp. 107-117
    • Kogan, J.1
  • 282
    • 17144397202 scopus 로고    scopus 로고
    • Data driven similarity measures for κ-means like clustering algorithms
    • J. Kogan, M. Teboulle, and C. Nicholas. Data driven similarity measures for κ-means like clustering algorithms. Information Retrieval, 8:331-349, 2005
    • (2005) Information Retrieval , vol.8 , pp. 331-349
    • Kogan, J.1    Teboulle, M.2    Nicholas, C.3
  • 283
    • 0025489075 scopus 로고
    • The self-organizing map
    • T. Kohonen. The self-organizing map. Proceedings of the IEEE, 9:1464-1479, 1990
    • (1990) Proceedings of the IEEE , vol.9 , pp. 1464-1479
    • Kohonen, T.1
  • 284
    • 0003410791 scopus 로고
    • Springer, Berlin Heidelberg New York
    • T. Kohonen. Self-Organizing Maps. Springer, Berlin Heidelberg New York, 1995
    • (1995) Self-Organizing Maps
    • Kohonen, T.1
  • 286
    • 8644284190 scopus 로고    scopus 로고
    • Polynomial filtering in latent semantic indexing for information retrieval
    • ACM, New York
    • E. Kokiopoulou and Y. Saad. Polynomial filtering in latent semantic indexing for information retrieval. In Proceedings of the 27th ACM SIGIR, pages 104-111, ACM, New York, 2004
    • (2004) Proceedings of the 27th ACM SIGIR , pp. 104-111
    • Kokiopoulou, E.1    Saad, Y.2
  • 288
    • 0034497251 scopus 로고    scopus 로고
    • Partitioning sparse rectangular and structurally nonsymmetric matrices for parallel computation
    • T. Kolda and B. Hendrickson. Partitioning sparse rectangular and structurally nonsymmetric matrices for parallel computation. SIAM Journal on Scientific Computing, 21(6):2048-2072, 2000
    • (2000) SIAM Journal on Scientific Computing , vol.21 , Issue.6 , pp. 2048-2072
    • Kolda, T.1    Hendrickson, B.2
  • 289
    • 0032183760 scopus 로고    scopus 로고
    • A semidiscrete matrix decomposition for latent semantic indexing information retrieval
    • T. Kolda and D.O'Leary. A semidiscrete matrix decomposition for latent semantic indexing information retrieval. ACM Transactions on Information Systems, 16(4):322-346, 1998
    • (1998) ACM Transactions on Information Systems , vol.16 , Issue.4 , pp. 322-346
    • Kolda, T.1    O'leary, D.2
  • 290
    • 0039646607 scopus 로고    scopus 로고
    • PhD thesis, The Applied Mathematics Program, University of Maryland, College Park, MD
    • T.G. Kolda. Limited-Memory Matrix Methods with Applications. PhD thesis, The Applied Mathematics Program, University of Maryland, College Park, MD, 1997
    • (1997) Limited-Memory Matrix Methods with Applications
    • Kolda, T.G.1
  • 291
    • 0000012317 scopus 로고    scopus 로고
    • Toward optimal feature selection
    • Bari, Italy
    • D. Koller and M. Sahami. Toward optimal feature selection. In Proceedings of the 13th ICML, pages 284-292, Bari, Italy, 1996
    • (1996) Proceedings of the 13th ICML , pp. 284-292
    • Koller, D.1    Sahami, M.2
  • 294
    • 84892061577 scopus 로고    scopus 로고
    • Application of the cross-entropy method to clustering and vector quantization
    • D. Kroese, R. Rubinstein, and T. Taimre. Application of the cross-entropy method to clustering and vector quantization. Submitted, 2004
    • (2004) Submitted
    • Kroese, D.1    Rubinstein, R.2    Taimre, T.3
  • 295
    • 0002975747 scopus 로고
    • Toward a practical method which helps uncover the structure of a set of observations by finding the line tranformation which optimizes a new "index of condensation
    • R.C. Milton and J.A. Nelder editors
    • J.B. Kruskal. Toward a practical method which helps uncover the structure of a set of observations by finding the line tranformation which optimizes a new "index of condensation. Statistical Computation, R.C. Milton and J.A. Nelder editors, pages 427-440, 1969
    • (1969) Statistical Computation , pp. 427-440
    • Kruskal, J.B.1
  • 296
    • 0023905024 scopus 로고
    • A criterion for determining the number of groups in a dataset using sum of squares clustering
    • W. Krzanowski and Y. Lai. A criterion for determining the number of groups in a dataset using sum of squares clustering. Biometrics, 44:23-34, 1985
    • (1985) Biometrics , vol.44 , pp. 23-34
    • Krzanowski, W.1    Lai, Y.2
  • 297
    • 0002719797 scopus 로고
    • The Hungarian method for the assignment problem
    • H. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistics Quarterly, 2:83-97, 1955
    • (1955) Naval Research Logistics Quarterly , vol.2 , pp. 83-97
    • Kuhn, H.1
  • 300
    • 0025919961 scopus 로고
    • An efficient agglomerative clustering algorithm using a heap
    • T. Kurita. An efficient agglomerative clustering algorithm using a heap. Pattern Recognition, 24(3):205-209, 1991
    • (1991) Pattern Recognition , vol.24 , Issue.3 , pp. 205-209
    • Kurita, T.1
  • 301
    • 0003126317 scopus 로고
    • A general theory of classification sorting strategies
    • G. Lance and W. Williams. A general theory of classification sorting strategies. Computer Journal, 9:373-386, 1967
    • (1967) Computer Journal , vol.9 , pp. 373-386
    • Lance, G.1    Williams, W.2
  • 303
    • 0002862737 scopus 로고    scopus 로고
    • Fast and effective text mining using linear-time document clustering
    • San Diego, CA, USA
    • B. Larsen and C. Aone. Fast and effective text mining using linear-time document clustering. In Proceedings of the 5th ACM SIGKDD, pages 16-22, San Diego, CA, USA, 1999
    • (1999) Proceedings of the 5th ACM SIGKDD , pp. 16-22
    • Larsen, B.1    Aone, C.2
  • 306
    • 29544440538 scopus 로고    scopus 로고
    • Projection pursuit for exploratory supervised classification
    • Humboldt-University of Berlin, University of Washington, February
    • E. Lee, D. Cook, S. Klinke, and T. Lumley. Projection pursuit for exploratory supervised classification. Technical Report 04-07, Iowa State University, Humboldt-University of Berlin, University of Washington, February 2004
    • (2004) Technical Report 04-07, Iowa State University
    • Lee, E.1    Cook, D.2    Klinke, S.3    Lumley, T.4
  • 309
    • 0000651166 scopus 로고    scopus 로고
    • Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms
    • T. Leighton and S. Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. Journal of the ACM, 46(6):787-832, 1999
    • (1999) Journal of the ACM , vol.46 , Issue.6 , pp. 787-832
    • Leighton, T.1    Rao, S.2
  • 310
    • 0031211480 scopus 로고    scopus 로고
    • Large-scale information retrieval with latent semantic indexing
    • T.A. Letsche and M.W. Berry. Large-scale information retrieval with latent semantic indexing. Information Sciences, 100(1-4):105-137, 1997
    • (1997) Information Sciences , vol.100 , Issue.1-4 , pp. 105-137
    • Letsche, T.A.1    Berry, M.W.2
  • 311
    • 0035514007 scopus 로고    scopus 로고
    • Resampling method for unsupervised estimation of cluster validity
    • E. Levine and E. Domany. Resampling method for unsupervised estimation of cluster validity. Neural Computation, 13:2573-2593, 2001
    • (2001) Neural Computation , vol.13 , pp. 2573-2593
    • Levine, E.1    Domany, E.2
  • 312
    • 0002312061 scopus 로고
    • Feature selection and feature extraction for text categorization
    • Morgan Kaufmann San Mateo, CA, February
    • D.D. Lewis. Feature selection and feature extraction for text categorization. In Proceedings of Speech and Natural Language Workshop, pages 212-217, Morgan Kaufmann San Mateo, CA, February 1992
    • (1992) Proceedings of Speech and Natural Language Workshop , pp. 212-217
    • Lewis, D.D.1
  • 314
    • 0000442068 scopus 로고
    • A fast algorithm to determine fractal dimensions by box counting
    • L. Liebovitch and T. Toth. A fast algorithm to determine fractal dimensions by box counting. Physics Letters, 141A(8), 1989
    • (1989) Physics Letters , vol.141 A , Issue.8
    • Liebovitch, L.1    Toth, T.2
  • 316
    • 0005180705 scopus 로고    scopus 로고
    • An information-theoretic definition of similarity
    • Madison, WI, USA
    • D. Lin. An information-theoretic definition of similarity. In Proceedings of the 15th ICML, pages 296-304, Madison, WI, USA, 1998
    • (1998) Proceedings of the 15th ICML , pp. 296-304
    • Lin, D.1
  • 318
    • 65349172099 scopus 로고    scopus 로고
    • Using low-memory representations to cluster very large data sets
    • D. Barbará and C. Kamath, editors
    • D. Littau and D. Boley. Using low-memory representations to cluster very large data sets. In D. Barbará and C. Kamath, editors, Proceedings of the 3rd SIAM International Conference on Data Mining, pages 341-345, 2003
    • (2003) Proceedings of the 3rd SIAM International Conference on Data Mining , pp. 341-345
    • Littau, D.1    Boley, D.2
  • 320
    • 17444396328 scopus 로고    scopus 로고
    • Clustering through decision tree construction
    • B. Liu, Y. Xia, and P.S. Yu. Clustering through decision tree construction. SIGMOD-00, 2000
    • (2000) SIGMOD-00
    • Liu, B.1    Xia, Y.2    Yu, P.S.3
  • 321
    • 0002715112 scopus 로고    scopus 로고
    • A probabilistic approach to feature selection - A filter solution
    • Bari, Italy
    • H. Liu and R. Setiono. A probabilistic approach to feature selection - a filter solution. In Proceedings of the 13th ICML, pages 319-327, Bari, Italy, 1996
    • (1996) Proceedings of the 13th ICML , pp. 319-327
    • Liu, H.1    Setiono, R.2
  • 322
    • 0028514351 scopus 로고
    • On the hardness of approximating minimization problems
    • C. Lund and M. Yannakakis. On the hardness of approximating minimization problems. Journal of ACM, 41(5):960-981, 1994
    • (1994) Journal of ACM , vol.41 , Issue.5 , pp. 960-981
    • Lund, C.1    Yannakakis, M.2
  • 324
    • 84892081119 scopus 로고    scopus 로고
    • Decomposition of event sequences into independent components
    • Chicago, IL, USA
    • H. Manilla and D. Rusakov. Decomposition of event sequences into independent components. In Proceedings of the 1st SIAM ICDM, Chicago, IL, USA, 2001
    • (2001) Proceedings of the 1st SIAM ICDM
    • Manilla, H.1    Rusakov, D.2
  • 325
    • 0029752880 scopus 로고    scopus 로고
    • A self-organizing network for hyperellipsoidal clustering (HEC)
    • J. Mao and A.K. Jain. A self-organizing network for hyperellipsoidal clustering (HEC). IEEE Transactions on Neural Networks, 7(1):16-29, 1996
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.1 , pp. 16-29
    • Mao, J.1    Jain, A.K.2
  • 327
    • 0003748753 scopus 로고
    • Some extensions of the κ-means algorithm for image segmentation and pattern classification
    • MIT Press, Cambridge, MA, USA
    • J.L. Marroquin and F. Girosi. Some extensions of the κ-means algorithm for image segmentation and pattern classification. Technical Report A.I. Memo 1390, MIT Press, Cambridge, MA, USA, 1993
    • (1993) Technical Report A.I. Memo 1390
    • Marroquin, J.L.1    Girosi, F.2
  • 329
    • 0034592784 scopus 로고    scopus 로고
    • Efficient clustering of highdimensional data sets with application to reference matching
    • Boston, MA, USA
    • A. McCallum, K. Nigam, and L.H. Ungar. Efficient clustering of highdimensional data sets with application to reference matching. In Proceedings of the 6th ACM SIGKDD, pages 169-178, Boston, MA, USA, 2000
    • (2000) Proceedings of the 6th ACM SIGKDD , pp. 169-178
    • McCallum, A.1    Nigam, K.2    Ungar, L.H.3
  • 333
    • 0034826101 scopus 로고    scopus 로고
    • An experimental comparison of model-based clustering methods
    • M. Meila and D. Heckerman. An experimental comparison of model-based clustering methods. Machine Learning, 42:9-29, 2001
    • (2001) Machine Learning , vol.42 , pp. 9-29
    • Meila, M.1    Heckerman, D.2
  • 336
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • G. Milligan and M. Cooper. An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50:159-179, 1985
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.1    Cooper, M.2
  • 338
    • 0042763812 scopus 로고    scopus 로고
    • Reinterpreting the category utility function
    • November
    • B. Mirkin. Reinterpreting the category utility function. Machine Learning, 42(2):219-228, November 2001
    • (2001) Machine Learning , vol.42 , Issue.2 , pp. 219-228
    • Mirkin, B.1
  • 339
    • 84892075910 scopus 로고    scopus 로고
    • Special issue: Theoretical advances in data clustering
    • N. Mishra and R. Motwani, editors, Special issue: Theoretical advances in data clustering. Machine Learning, 56, 2004
    • (2004) Machine Learning , vol.56
    • Mishra, N.1    Motwani, R.2
  • 341
    • 0042312608 scopus 로고    scopus 로고
    • Feature weighting in κ-means clustering
    • D.S. Modha and W. Scott Spangler. Feature weighting in κ-means clustering. Machine Learning, 52(3):217-237, 2003
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 217-237
    • Modha, D.S.1    Scott Spangler, W.2
  • 343
    • 84899029127 scopus 로고    scopus 로고
    • Very fast em-based mixture model clustering using multiresolution kd-trees
    • A. Moore. Very fast em-based mixture model clustering using multiresolution kd-trees. Advances in Neural Information Processing Systems, 11, 1999
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Moore, A.1
  • 345
    • 0020848951 scopus 로고
    • A survey of recent advances in hierarchical clustering algorithms
    • F. Murtagh. A survey of recent advances in hierarchical clustering algorithms. Computer Journal, 26(4):354-359, 1983
    • (1983) Computer Journal , vol.26 , Issue.4 , pp. 354-359
    • Murtagh, F.1
  • 353
    • 0029358115 scopus 로고
    • Parallel algorithms for hierarchical clustering
    • C. Olson. Parallel algorithms for hierarchical clustering. Parallel Computing, 21:1313-1325, 1995
    • (1995) Parallel Computing , vol.21 , pp. 1313-1325
    • Olson, C.1
  • 355
    • 0033345672 scopus 로고    scopus 로고
    • Unexpectedness as a measure of interestingness in knowledge discovery
    • B. Padmanabhan and A. Tuzhilin. Unexpectedness as a measure of interestingness in knowledge discovery. Decision Support Systems Journal, 27(3):303-318, 1999
    • (1999) Decision Support Systems Journal , vol.27 , Issue.3 , pp. 303-318
    • Padmanabhan, B.1    Tuzhilin, A.2
  • 356
    • 0034593047 scopus 로고    scopus 로고
    • Small is beautiful: Discovering the minimal set of unexpected patterns
    • Boston, MA, USA
    • B. Padmanabhan and A. Tuzhilin. Small is beautiful: discovering the minimal set of unexpected patterns. In Proceedings of the 6th ACM SIGKDD, pages 54-63, Boston, MA, USA, 2000
    • (2000) Proceedings of the 6th ACM SIGKDD , pp. 54-63
    • Padmanabhan, B.1    Tuzhilin, A.2
  • 357
    • 0002738562 scopus 로고    scopus 로고
    • Accelerating exact κ-means algorithms with geometric reasoning
    • San Diego, CA, USA
    • D. Pelleg and A. Moore. Accelerating exact κ-means algorithms with geometric reasoning. In Proceedings of the 5th ACM SIGKDD, pages 277-281, San Diego, CA, USA, 1999
    • (1999) Proceedings of the 5th ACM SIGKDD , pp. 277-281
    • Pelleg, D.1    Moore, A.2
  • 358
    • 0001820920 scopus 로고    scopus 로고
    • X-means: Extending κ-means with efficient estimation of the number of clusters
    • Stanford University, USA
    • D. Pelleg and A. Moore. X-means: extending κ-means with efficient estimation of the number of clusters. In Proceedings 17th ICML, Stanford University, USA, 2000
    • (2000) Proceedings 17th ICML
    • Pelleg, D.1    Moore, A.2
  • 362
    • 84948481845 scopus 로고
    • An algorithm for suffix stripping
    • M.F. Porter. An algorithm for suffix stripping. Program, 14:130-137, 1980
    • (1980) Program , vol.14 , pp. 130-137
    • Porter, M.F.1
  • 363
    • 0033896770 scopus 로고    scopus 로고
    • A theory of proximity based clustering: Structure detection by optimization
    • J. Puzicha, T. Hofmann, and J.M. Buhmann. A theory of proximity based clustering: structure detection by optimization. PATREC: Pattern Recognition, 33:617-634, 2000
    • (2000) PATREC: Pattern Recognition , vol.33 , pp. 617-634
    • Puzicha, J.1    Hofmann, T.2    Buhmann, J.M.3
  • 364
    • 84892121646 scopus 로고    scopus 로고
    • Creating your own LSA space
    • T. Landauer, D. McNamara, S. Dennis, and W. Kintsch, editors, Associates Erlbaum, Mahawah, NJ, In press
    • J. Quesada. Creating your own LSA space. In T. Landauer, D. McNamara, S. Dennis, and W. Kintsch, editors, Latent Semantic Anlysis: A Road to Meaning. Associates Erlbaum, Mahawah, NJ, In press
    • Latent Semantic Anlysis: A Road to Meaning
    • Quesada, J.1
  • 365
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large data sets
    • S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers from large data sets. Sigmoid Record, 29(2):427-438, 2000
    • (2000) Sigmoid Record , vol.29 , Issue.2 , pp. 427-438
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 366
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W.M. Rand. Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66:846-850, 1971
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 367
    • 0000019005 scopus 로고
    • Clustering algorithms
    • W. Frakes and R. Baeza-Yates, editors, Prentice Hall, Englewood Cliffs, NJ
    • E. Rasmussen. Clustering algorithms. In W. Frakes and R. Baeza-Yates, editors, Information Retrieval: Data Structures and Algorithms, pages 419-442. Prentice Hall, Englewood Cliffs, NJ, 1992
    • (1992) Information Retrieval: Data Structures and Algorithms , pp. 419-442
    • Rasmussen, E.1
  • 368
    • 84877058127 scopus 로고    scopus 로고
    • Scalable algorithms for mining large databases
    • Jiawei Han, editor, ACM, USA
    • R. Rastogi and K. Shim. Scalable algorithms for mining large databases. In Jiawei Han, editor, KDD-99 Tutorial Notes. ACM, USA, 1999
    • (1999) KDD-99 Tutorial Notes
    • Rastogi, R.1    Shim, K.2
  • 369
    • 0003033112 scopus 로고
    • Using information content to evaluate semantic similarity in a taxonomy
    • Montreal, Canada
    • P. Resnik. Using information content to evaluate semantic similarity in a taxonomy. In Proceedings of IJCAI-95, pages 448-453, Montreal, Canada, 1995
    • (1995) Proceedings of IJCAI-95 , pp. 448-453
    • Resnik, P.1
  • 370
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 372
    • 0004267646 scopus 로고
    • Princeton University Press, Princeton, NJ
    • R.T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.
    • (1970) Convex Analysis
    • Rockafellar, R.T.1
  • 373
    • 0025585402 scopus 로고
    • A deterministic annealing approach to clustering
    • K. Rose, E. Gurewitz, and C.G. Fox. A deterministic annealing approach to clustering. Pattern Recognition Letters, 11(9):589-594, 1990
    • (1990) Pattern Recognition Letters , vol.11 , Issue.9 , pp. 589-594
    • Rose, K.1    Gurewitz, E.2    Fox, C.G.3
  • 374
    • 0347918435 scopus 로고    scopus 로고
    • A resampling approach to cluster validation
    • V. Roth, V. Lange, M. Braun, and J. Buhmann. A resampling approach to cluster validation. In COMPSTAT, http://www.cs.uni-bonn.De/~braunm, 2002
    • (2002) COMPSTAT
    • Roth, V.1    Lange, V.2    Braun, M.3    Buhmann, J.4
  • 375
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validation of clustering solutions
    • V. Roth, V. Lange, M. Braun, and J. Buhmann. Stability-based validation of clustering solutions. Neural Computation, 16(6):1299-1323, 2004
    • (2004) Neural Computation , vol.16 , Issue.6 , pp. 1299-1323
    • Roth, V.1    Lange, V.2    Braun, M.3    Buhmann, J.4
  • 376
    • 0000228665 scopus 로고    scopus 로고
    • The cross-entropy method for combinatorial and continuous optimization
    • R.Y. Rubinstein. The cross-entropy method for combinatorial and continuous optimization. Methodology and Computing in Applied Probability, 2:127-190, 1999
    • (1999) Methodology and Computing in Applied Probability , vol.2 , pp. 127-190
    • Rubinstein, R.Y.1
  • 379
    • 84976664060 scopus 로고
    • Automatic structuring and retrieval of large text files
    • G. Salton, J. Allan, and C. Buckley. Automatic structuring and retrieval of large text files. Communications of the ACM, 37(2):97-108, 1994
    • (1994) Communications of the ACM , vol.37 , Issue.2 , pp. 97-108
    • Salton, G.1    Allan, J.2    Buckley, C.3
  • 380
    • 45549117987 scopus 로고
    • Term-weighting approaches in automatic text retrieval
    • G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Information Processing & Management, 4(5):513-523, 1988
    • (1988) Information Processing & Management , vol.4 , Issue.5 , pp. 513-523
    • Salton, G.1    Buckley, C.2
  • 382
    • 0016572913 scopus 로고
    • A vector space model for automatic indexing
    • G. Salton, A. Wong, and C.S. Yang. A vector space model for automatic indexing. Communications of the ACM, 18(11):613-620, 1975
    • (1975) Communications of the ACM , vol.18 , Issue.11 , pp. 613-620
    • Salton, G.1    Wong, A.2    Yang, C.S.3
  • 383
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications
    • J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 2(2):169-194, 1998
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.-P.3    Xu, X.4
  • 385
  • 388
    • 84898817460 scopus 로고    scopus 로고
    • Grid-clustering: A fast hierarchical clustering method for very large data sets
    • E. Schikuta. Grid-clustering: a fast hierarchical clustering method for very large data sets. In Proceedings 13th International Conference on Pattern Recognition Volume 2, pages 101-105, 1996
    • (1996) Proceedings 13th International Conference on Pattern Recognition , vol.2 , pp. 101-105
    • Schikuta, E.1
  • 390
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6:461-464, 1978
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 393
    • 0141498446 scopus 로고    scopus 로고
    • Algorithmic approaches to clustering gene expression data
    • T. Jiang, T. Smith, Y. Xu, and M.Q. Zhang, editors, MIT Press, Cambridge, MA
    • R. Shamir and R. Sharan. Algorithmic approaches to clustering gene expression data. In T. Jiang, T. Smith, Y. Xu, and M.Q. Zhang, editors, Current Topics in Computational Molecular Biology, pages 269-300, MIT Press, Cambridge, MA, 2002
    • (2002) Current Topics in Computational Molecular Biology , pp. 269-300
    • Shamir, R.1    Sharan, R.2
  • 394
    • 0003052357 scopus 로고    scopus 로고
    • Wavecluster: A multi-resolution clustering approach for very large spatial databases
    • New York, NY
    • G. Sheikholeslami, S. Chatterjee, and A. Zhang. Wavecluster: a multi-resolution clustering approach for very large spatial databases. In Proceedings of the 24th Conference on VLDB, pages 428-439, New York, NY, 1998
    • (1998) Proceedings of the 24th Conference on VLDB , pp. 428-439
    • Sheikholeslami, G.1    Chatterjee, S.2    Zhang, A.3
  • 396
    • 0002663098 scopus 로고
    • An optimally efficient algorithm for the single link cluster method
    • R. Sibson. SLINK: an optimally efficient algorithm for the single link cluster method. Computer Journal, 16:30-34, 1973
    • (1973) Computer Journal , vol.16 , pp. 30-34
    • Sibson. Slink, R.1
  • 400
    • 0002096830 scopus 로고    scopus 로고
    • Document clustering using word clusters via the Information Bottleneck Method
    • N. Slonim and N. Tishby. Document clustering using word clusters via the Information Bottleneck Method. Proceedings SIGIR, pages 208-215, 2000
    • (2000) Proceedings SIGIR , pp. 208-215
    • Slonim, N.1    Tishby, N.2
  • 402
    • 2642528997 scopus 로고    scopus 로고
    • Model selection for probabilistic clustering using cross-validated likelihood
    • Statistics and Computing
    • P. Smyth. Model selection for probabilistic clustering using cross-validated likelihood. Technical Report ICS Tech Report 98-09, Statistics and Computing, 1998
    • (1998) Technical Report ICS Tech Report 98-09
    • Smyth, P.1
  • 406
    • 84979101752 scopus 로고
    • Footrule for measuring correlations
    • July
    • C. Spearman. Footrule for measuring correlations. British Journal of Psychology, 2:89-108, July 1906
    • (1906) British Journal of Psychology , vol.2 , pp. 89-108
    • Spearman, C.1
  • 410
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - A knowledge reuse framework for combining multiple partitions
    • Dec
    • A. Strehl and J. Ghosh. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research (JMLR), 3(Dec):583-617, 2002
    • (2002) Journal of Machine Learning Research (JMLR) , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 412
    • 2542587466 scopus 로고    scopus 로고
    • Relationship-based clustering and visualization for high-dimensional data mining
    • A. Strehl and J. Ghosh. Relationship-based clustering and visualization for high-dimensional data mining. INFORMS Journal on Computing, 15(2):208-230, 2003
    • (2003) INFORMS Journal on Computing , vol.15 , Issue.2 , pp. 208-230
    • Strehl, A.1    Ghosh, J.2
  • 414
    • 0242679438 scopus 로고    scopus 로고
    • Finding the number of clusters in a data set: An information theoretic approach
    • C. Sugar and G. James. Finding the number of clusters in a data set: an information theoretic approach. Journal of the American Statistical Association, 98:750-763, 2003
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 750-763
    • Sugar, C.1    James, G.2
  • 415
    • 0001286634 scopus 로고
    • Entropic proximal mappings with application to nonlinear programming
    • M. Teboulle. Entropic proximal mappings with application to nonlinear programming. Mathematics of Operation Research, 17:670-690, 1992
    • (1992) Mathematics of Operation Research , vol.17 , pp. 670-690
    • Teboulle, M.1
  • 417
    • 0031285685 scopus 로고    scopus 로고
    • Convergence of proximal-like algorithms
    • M. Teboulle. Convergence of proximal-like algorithms. SIAM Journal of Optimization, 7:1069-1083, 1997
    • (1997) SIAM Journal of Optimization , vol.7 , pp. 1069-1083
    • Teboulle, M.1
  • 422
    • 84950351930 scopus 로고
    • Multidimensional scaling, I: Theory and method
    • W.S. Torgerson. Multidimensional scaling, I: Theory and method. Psychometrika, 17:401-419, 1952
    • (1952) Psychometrika , vol.17 , pp. 401-419
    • Torgerson, W.S.1
  • 426
    • 0035013804 scopus 로고    scopus 로고
    • Spatial clustering in the presence of obstacles
    • Heidelberg, Germany
    • A.K.H. Tung, J. Hou, and J. Han. Spatial clustering in the presence of obstacles. In Proceedings of the 17th ICDE, pages 359-367, Heidelberg, Germany, 2001
    • (2001) Proceedings of the 17th ICDE , pp. 359-367
    • Tung, A.K.H.1    Hou, J.2    Han, J.3
  • 433
    • 0022906994 scopus 로고
    • Implementing agglomerative hierarchical clustering algorithms for use in document retrieval
    • E.M. Voorhees. Implementing agglomerative hierarchical clustering algorithms for use in document retrieval. Information Processing and Management, 22(6):465-476, 1986
    • (1986) Information Processing and Management , vol.22 , Issue.6 , pp. 465-476
    • Voorhees, E.M.1
  • 434
    • 84989599138 scopus 로고
    • The cluster hypothesis revisited
    • ACM SIGIR Conference on Research and Development in Information Retrieval
    • E.M. Voorhees. The cluster hypothesis revisited. In Proceedings of the Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 95-104, 1985
    • (1985) Proceedings of the Annual International , pp. 95-104
    • Voorhees, E.M.1
  • 437
    • 84994158589 scopus 로고    scopus 로고
    • STING: A statistical information grid approach to spatialdata mining
    • Athens, Greece
    • W. Wang, J. Yang, and R. Muntz. STING: a statistical information grid approach to spatialdata mining. In Proceedings of the 23rd Conference on VLDB, pages 186-195, Athens, Greece, 1997
    • (1997) Proceedings of the 23rd Conference on VLDB , pp. 186-195
    • Wang, W.1    Yang, J.2    Muntz, R.3
  • 439
    • 0032652562 scopus 로고    scopus 로고
    • Sting+: An approach to active spatial data mining
    • Sydney, Australia
    • W. Wang, J. Yang, and R.R. Muntz. Sting+: an approach to active spatial data mining. In Proceedings 15th ICDE, pages 116-125, Sydney, Australia, 1999
    • (1999) Proceedings 15th ICDE , pp. 116-125
    • Wang, W.1    Yang, J.2    Muntz, R.R.3
  • 440
    • 0031171225 scopus 로고    scopus 로고
    • A comparative study of self-organizing clustering algorithms Dignet and ART2
    • C.-D. Wann and S.A. Thomopoulos. A comparative study of self-organizing clustering algorithms Dignet and ART2. Neural Networks, 10(4):737-743, 1997
    • (1997) Neural Networks , vol.10 , Issue.4 , pp. 737-743
    • Wann, C.-D.1    Thomopoulos, S.A.2
  • 441
  • 443
    • 3543147086 scopus 로고
    • Recent trends in hierarchical document clustering: A criticial review
    • P. Willet. Recent trends in hierarchical document clustering: A criticial review. Information Processing and Management, 24(5):577-597, 1988
    • (1988) Information Processing and Management , vol.24 , Issue.5 , pp. 577-597
    • Willet, P.1
  • 445
    • 0032260148 scopus 로고    scopus 로고
    • Downdating the latent semantic indexing model for conceptual information retrieval
    • D.I. Witter and M.W. Berry. Downdating the latent semantic indexing model for conceptual information retrieval. The Computer Journal, 41(8):589-601, 1998
    • (1998) The Computer Journal , vol.41 , Issue.8 , pp. 589-601
    • Witter, D.I.1    Berry, M.W.2
  • 446
    • 0031701179 scopus 로고    scopus 로고
    • A distribution-based clustering algorithm for mining large spatial datasets
    • Orlando, FL, USA
    • X. Xu, M. Ester, H.-P. Kriegel, and J. Sander. A distribution-based clustering algorithm for mining large spatial datasets. In Proceedings of the 14th ICDE, pages 324-331, Orlando, FL, USA, 1998
    • (1998) Proceedings of the 14th ICDE , pp. 324-331
    • Xu, X.1    Ester, M.2    Kriegel, H.-P.3    Sander, J.4
  • 447
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • May
    • Y. Yang. An evaluation of statistical approaches to text categorization. Journal of Information Retrieval, 1(1/2):67-88, May 1999
    • (1999) Journal of Information Retrieval , vol.1 , Issue.1-2 , pp. 67-88
    • Yang, Y.1
  • 449
    • 0001154535 scopus 로고
    • On constructing minimum spanning trees in κ-dimensional space and related problems
    • A. Yao. On constructing minimum spanning trees in κ-dimensional space and related problems. SIAM Journal on Computing, 11(4):721-736, 1982
    • (1982) SIAM Journal on Computing , vol.11 , Issue.4 , pp. 721-736
    • Yao, A.1
  • 450
    • 0014976008 scopus 로고
    • Graph-theoretical methods for detecting and describing gestalt clusters
    • January
    • C.T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Transactions on Computers, C-20(1):68-86, January 1971
    • (1971) IEEE Transactions on Computers , vol.C-20 , Issue.1 , pp. 68-86
    • Zahn, C.T.1
  • 455
    • 0035751898 scopus 로고    scopus 로고
    • Bipartite graph partitioning and data clustering
    • H. Zha, X. He, C. Ding, H. Simon, and M. Gu. Bipartite graph partitioning and data clustering. In CIKM, 2001
    • (2001) CIKM
    • Zha, H.1    He, X.2    Ding, C.3    Simon, H.4    Gu, M.5
  • 456
    • 0033296577 scopus 로고    scopus 로고
    • On updating problems in latent semantic indexing
    • March
    • H. Zha and H.D. Simon. On updating problems in latent semantic indexing. SIAM Journal on Scientific Computing, 21(2):782-791, March 2000
    • (2000) SIAM Journal on Scientific Computing , vol.21 , Issue.2 , pp. 782-791
    • Zha, H.1    Simon, H.D.2
  • 457
    • 19644383468 scopus 로고    scopus 로고
    • Generalized κ-harmonic means - Dynamic weighting of data in unsupervised learning
    • Chicago, IL, USA
    • B. Zhang. Generalized κ-harmonic means - dynamic weighting of data in unsupervised learning. In Proceedings of the 1st SIAM ICDM, Chicago, IL, USA, 2001
    • (2001) Proceedings of the 1st SIAM ICDM
    • Zhang, B.1
  • 462
    • 0037869164 scopus 로고    scopus 로고
    • Criterion functions for document clustering: Experiments and analysis
    • University of Minnesota
    • Y. Zhao and G. Karypis. Criterion functions for document clustering: experiments and analysis. Technical Report CS Department 01-40, University of Minnesota, 2001
    • (2001) Technical Report CS Department 01-40
    • Zhao, Y.1    Karypis, G.2
  • 463
    • 3543085722 scopus 로고    scopus 로고
    • Empirical and theoretical comparisons of selected criterion functions for document clustering
    • Y. Zhao and G. Karypis. Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning, 55(3):311-331, 2004
    • (2004) Machine Learning , vol.55 , Issue.3 , pp. 311-331
    • Zhao, Y.1    Karypis, G.2
  • 464
    • 84892062511 scopus 로고    scopus 로고
    • A comparative study of generative models for document clustering
    • S. Zhong and J. Ghosh. A comparative study of generative models for document clustering. Knowledge and Intelligent Systems, 2005
    • (2005) Knowledge and Intelligent Systems
    • Zhong, S.1    Ghosh, J.2
  • 465
    • 0027251238 scopus 로고
    • NP-complete problems have a version that's hard to approximate
    • IEEE Computer Society, Los Alamitos, CA
    • D. Zuckerman. NP-complete problems have a version that's hard to approximate. In Proceedings of the 8th Annual Structure in Complexity Theory Conference, pages 305-312, IEEE Computer Society, Los Alamitos, CA, 1993
    • (1993) Proceedings of the 8th Annual Structure in Complexity Theory Conference , pp. 305-312
    • Zuckerman, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.