메뉴 건너뛰기




Volumn 4, Issue , 1996, Pages 147-178

Iterative optimization and simplification of hierarchical clusterings

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL COMPLEXITY; DATA STRUCTURES; HIERARCHICAL SYSTEMS; ITERATIVE METHODS; LEARNING SYSTEMS; OPTIMIZATION; PATTERN RECOGNITION;

EID: 0029678997     PISSN: 10769757     EISSN: None     Source Type: Journal    
DOI: 10.1613/jair.276     Document Type: Article
Times cited : (137)

References (53)
  • 2
    • 1842704721 scopus 로고
    • An iterative Bayesian algorithm for categorization
    • Fisher, D., Pazzani, M., & Langley, P. (Eds.), San Mateo, CA: Morgan Kaufmann
    • Anderson, J. R., & Matessa, M. (1991). An iterative Bayesian algorithm for categorization. In Fisher, D., Pazzani, M., & Langley, P. (Eds.), Concept formation: Knowledge and Experience in Unsupervised Learning. San Mateo, CA: Morgan Kaufmann.
    • (1991) Concept Formation: Knowledge and Experience in Unsupervised Learning
    • Anderson, J.R.1    Matessa, M.2
  • 7
    • 0000353884 scopus 로고
    • Explaining basic categories: Feature predictability and information
    • Corter, J., & Gluck, M. (1992). Explaining basic categories: feature predictability and information. Psychological Bulletin, 111, 291-303.
    • (1992) Psychological Bulletin , vol.111 , pp. 291-303
    • Corter, J.1    Gluck, M.2
  • 10
    • 8644267372 scopus 로고
    • Personal communication, oct. 1993
    • Devaney, M., & Ram, A. (1993). Personal communication, oct. 1993.
    • (1993)
    • Devaney, M.1    Ram, A.2
  • 13
    • 0003586436 scopus 로고
    • Ph.D. thesis, University of Michigan, Ann Arbor, MI: Department of Computer Science and Engineering
    • Fayyad, U. (1991). On the Induction of Decision Trees for Multiple Concept Learning. Ph.D. thesis, University of Michigan, Ann Arbor, MI: Department of Computer Science and Engineering.
    • (1991) On the Induction of Decision Trees for Multiple Concept Learning
    • Fayyad, U.1
  • 18
    • 0343442766 scopus 로고
    • Knowledge acquisition via incremental conceptual clustering
    • Fisher, D. H. (1987a). Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2, 139-172.
    • (1987) Machine Learning , vol.2 , pp. 139-172
    • Fisher, D.H.1
  • 19
    • 0011840676 scopus 로고
    • Ph.D. thesis, University of California, Irvine, CA: Department of Information and Computer Science
    • Fisher, D. H. (1987b). Knowledge Acquisition via Incremental Conceptual Clustering. Ph.D. thesis, University of California, Irvine, CA: Department of Information and Computer Science.
    • (1987) Knowledge Acquisition Via Incremental Conceptual Clustering
    • Fisher, D.H.1
  • 21
    • 77957077963 scopus 로고
    • The structure and formation of natural categories
    • Bower, G. H. (Ed.), San Diego, CA: Academic Press
    • Fisher, D. H., & Langley, P. (1990). The structure and formation of natural categories. In Bower, G. H. (Ed.), The Psychology of Learning and Motivation, Vol. 25. San Diego, CA: Academic Press.
    • (1990) The Psychology of Learning and Motivation , vol.25
    • Fisher, D.H.1    Langley, P.2
  • 28
    • 0000148778 scopus 로고
    • A heuristic approach to the discovery of macro operators
    • Iba, G. (1989). A heuristic approach to the discovery of macro operators. Machine Learning, 3, 285-317.
    • (1989) Machine Learning , vol.3 , pp. 285-317
    • Iba, G.1
  • 31
    • 8644242893 scopus 로고
    • Ph.D. thesis, Stockholm University, Stockholm, Sweden: Department of Computer and Systems Sciences
    • Kilander, F. (1994). Incremental Conceptual Clustering in an On-Line Application. Ph.D. thesis, Stockholm University, Stockholm, Sweden: Department of Computer and Systems Sciences.
    • (1994) Incremental Conceptual Clustering in An On-Line Application
    • Kilander, F.1
  • 32
    • 24144502661 scopus 로고
    • Reconstructive memory: A computer model
    • Kolodner, J. L. (1983). Reconstructive memory: A computer model. Cognitive Science, 7, 281-328.
    • (1983) Cognitive Science , vol.7 , pp. 281-328
    • Kolodner, J.L.1
  • 33
    • 8644231567 scopus 로고
    • Correcting erroneous generalizations
    • Lebowitz, M. (1982). Correcting erroneous generalizations. Cognition and Brain Theory, 5, 367-381.
    • (1982) Cognition and Brain Theory , vol.5 , pp. 367-381
    • Lebowitz, M.1
  • 34
    • 0000166613 scopus 로고
    • Experiments with incremental concept formation: UNIMEM
    • Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMEM. Machine Learning, 2, 103-138.
    • (1987) Machine Learning , vol.2 , pp. 103-138
    • Lebowitz, M.1
  • 36
    • 0025798330 scopus 로고
    • A distance-based attribute selection measure for decision tree induction
    • Lopez de Mantaras, R. (1991). A distance-based attribute selection measure for decision tree induction. Machine Learning, 6, 81-92.
    • (1991) Machine Learning , vol.6 , pp. 81-92
    • Lopez De Mantaras, R.1
  • 37
    • 2342463258 scopus 로고
    • Acquiring and combining overlapping concepts
    • Martin, J., & Billman, D. (1994). Acquiring and combining overlapping concepts. Machine Learning, 16, 121-155.
    • (1994) Machine Learning , vol.16 , pp. 121-155
    • Martin, J.1    Billman, D.2
  • 40
    • 85131465852 scopus 로고
    • Structural principles of categorization
    • Tighe, T., & Shepp, B. (Eds.), Hillsdale, NJ: Lawrence Erlbaum
    • Medin, D. (1983). Structural principles of categorization. In Tighe, T., & Shepp, B. (Eds.), Perception, Cognition, and Development, pp. 203-230. Hillsdale, NJ: Lawrence Erlbaum.
    • (1983) Perception, Cognition, and Development , pp. 203-230
    • Medin, D.1
  • 42
    • 0003046842 scopus 로고
    • Learning from observation: Conceptual clustering
    • Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), San Mateo, CA: Morgan Kaufmann
    • Michalski, R. S., & Stepp, R. (1983b). Learning from observation: conceptual clustering. In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M. (Eds.), Machine Learning: An Artificial Intelligence Approach. San Mateo, CA: Morgan Kaufmann.
    • (1983) Machine Learning: An Artificial Intelligence Approach
    • Michalski, R.S.1    Stepp, R.2
  • 43
    • 79952785777 scopus 로고
    • An empirical comparison of pruning methods for decision-tree induction
    • Mingers, J. (1989a). An empirical comparison of pruning methods for decision-tree induction. Machine Learning, 4, 227-243.
    • (1989) Machine Learning , vol.4 , pp. 227-243
    • Mingers, J.1
  • 44
    • 34249966833 scopus 로고
    • An empirical comparison of selection measures for decision-tree induction
    • Mingers, J. (1989b). An empirical comparison of selection measures for decision-tree induction. Machine Learning, 3, 319-342.
    • (1989) Machine Learning , vol.3 , pp. 319-342
    • Mingers, J.1
  • 45
    • 0029185047 scopus 로고
    • A branch and bound incremental conceptual clusterer
    • Nevins, A. J. (1995). A branch and bound incremental conceptual clusterer. Machine Learning, 18, 5-22.
    • (1995) Machine Learning , vol.18 , pp. 5-22
    • Nevins, A.J.1
  • 46
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.
    • (1986) Machine Learning , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 49
    • 0002908586 scopus 로고
    • The formation and use of abstract concepts in design
    • Fisher, D., Pazzani, M., & Langley, P. (Eds.), San Mateo, CA: Morgan Kaufmann
    • Reich, Y., & Fenves, S. (1991). The formation and use of abstract concepts in design. In Fisher, D., Pazzani, M., & Langley, P. (Eds.), Concept Formation: Knowledge and Experience in Unsupervised Learning. San Mateo, CA: Morgan Kaufmann.
    • (1991) Concept Formation: Knowledge and Experience in Unsupervised Learning
    • Reich, Y.1    Fenves, S.2
  • 50
    • 85152519885 scopus 로고
    • An improved algorithm for incremental induction of decision trees
    • San Mateo, CA: Morgan Kaufmann
    • Utgoff, P. (1994). An improved algorithm for incremental induction of decision trees. In Proceedings of the Eleventh International Conference on Machine Learning, pp. 318-325. San Mateo, CA: Morgan Kaufmann.
    • (1994) Proceedings of the Eleventh International Conference on Machine Learning , pp. 318-325
    • Utgoff, P.1
  • 53
    • 8644270336 scopus 로고
    • A self-organized knowledge base for recall, design, and discovery in organic chemistry
    • Pierce, T. H., & Hohne, B. A. (Eds.), Washington, DC: American Chemical Society
    • Wilcox, C. S., & Levinson, R. A. (1986). A self-organized knowledge base for recall, design, and discovery in organic chemistry. In Pierce, T. H., & Hohne, B. A. (Eds.), Artificial Intelligence Applications in Chemistry. Washington, DC: American Chemical Society.
    • (1986) Artificial Intelligence Applications in Chemistry
    • Wilcox, C.S.1    Levinson, R.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.