메뉴 건너뛰기




Volumn 50, Issue 5, 2011, Pages

Hyperspectral target detection using regularized high-order matched filter

Author keywords

high order statistics; hyperspectral target detection; regularized term; second order statistics

Indexed keywords

AUTOMATIC TARGET DETECTION; CONVERGENCE PROPERTIES; DETECTION ALGORITHM; GRADIENT DESCENT METHOD; HIGH ORDER STATISTICS; HIGH-ORDER; HYPER-SPECTRAL IMAGES; HYPERSPECTRAL DATA; HYPERSPECTRAL IMAGE PROCESSING; HYPERSPECTRAL TARGET DETECTION; KERNEL BASED METHODS; OBJECTIVE FUNCTIONS; OPTIMIZATION PROBLEMS; REGULARIZED TERM; SECOND-ORDER STATISTICS; SMALL POPULATION; SPECTRAL VARIATION; TARGET DETECTION; TARGETS OF INTEREST;

EID: 79955670118     PISSN: 00913286     EISSN: 15602303     Source Type: Journal    
DOI: 10.1117/1.3572118     Document Type: Article
Times cited : (9)

References (25)
  • 1
    • 17644371466 scopus 로고    scopus 로고
    • Hyperspectral image processing for automatic target detection applications
    • D. Manolakis, D. Marden, and G. A. Shaw, Hyperspectral image processing for automatic target detection applications., Lincoln Lab. J. 14 (1), 79-116 (2003). http://www.ll.mit.edu/publications/journal/pdf/vol14-no1/14- 1hyperspectralprocessing.pdf.
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 79-116
    • Manolakis, D.1    Marden, D.2    Shaw, G.A.3
  • 2
    • 84910112338 scopus 로고    scopus 로고
    • Evolution of imaging spectrometry: Past, present, and future
    • 10.1117/12.258055
    • J. B. Breckinridge, Evolution of imaging spectrometry: past, present, and future., Proc. SPIE 2819, 2-6 (1996). 10.1117/12.258055
    • (1996) Proc. SPIE , vol.2819 , pp. 2-6
    • Breckinridge, J.B.1
  • 3
    • 85032751277 scopus 로고    scopus 로고
    • Detection algorithms for hyperspectral imaging applications
    • DOI 10.1109/79.974724
    • D. Manolakis and G. Shaw, Detection algorithms for hyperspectral imaging application., IEEE Signal Process. Mag. 19, 29-43 (2002). 10.1109/79.974724 (Pubitemid 34237206)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 29-43
    • Manolakis, D.G.1    Shaw, G.2
  • 4
    • 12844252952 scopus 로고    scopus 로고
    • Spectral imaging for remote sensing
    • G. A. Shaw and H. K. Burke, Spectral imaging for remote sensing., Lincoln Lab. J. 14 (1), 3-28 (2003). http://www.ll.mit.edu/publications/journal/pdf/ vol14-no1/14-1remotesensing.pdf.
    • (2003) Lincoln Lab. J. , vol.14 , Issue.1 , pp. 3-28
    • Shaw, G.A.1    Burke, H.K.2
  • 5
    • 33744816790 scopus 로고    scopus 로고
    • Spectral curve fitting for automatic hyperspectral data analysis
    • DOI 10.1109/TGRS.2006.870435
    • A. J. Brown, Spectral curve fitting for automatic hyperspectral data analysis., IEEE Transactions. Geosci. Remote Sens. 44 (6), 1601-1608 (2006). 10.1109/TGRS.2006.870435 (Pubitemid 43832995)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.6 , pp. 1601-1607
    • Brown, A.J.1
  • 6
    • 33744726231 scopus 로고    scopus 로고
    • Constrained band selection for hyperspectral imagery
    • DOI 10.1109/TGRS.2006.864389
    • C. I. Chang and S. Wang, Constrained band selection for hyperspectral imagery., IEEE Transactions. Geosci. Remote Sens. 44 (6), 1575-1585 (2006). 10.1109/TGRS.2006.864389 (Pubitemid 43824504)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.6 , pp. 1575-1585
    • Chang, C.-I.1    Wang, S.2
  • 7
    • 33646452886 scopus 로고    scopus 로고
    • A method of wavelength selection and spectral discrimination of hyperspectral reflectance spectrometry
    • DOI 10.1109/TGRS.2006.870441, 1645307
    • L. J. Renzullo, A. L. Blanchfield, and K. S. Powell, A method of wavelength selection and spectral discrimination of hyperspectral reflectance spectrometry., IEEE Transactions. Geosci. Remote Sens. 44 (7), 1986-1994 (2006). 10.1109/TGRS.2006.870441 (Pubitemid 44109521)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.7 , pp. 1986-1994
    • Renzullo, L.J.1    Blanchfield, A.L.2    Powell, K.S.3
  • 8
    • 24344479204 scopus 로고    scopus 로고
    • Taxonomy of detection algorithms for hyperspectral imaging applications
    • DOI 10.1117/1.1930927, 066403
    • D. Manolakis, Taxonomy of detection algorithms for hyperspectral imaging applications., Opt. Eng. 44 (6), 1-11 (2005). 10.1117/1.1930927 (Pubitemid 41249820)
    • (2005) Optical Engineering , vol.44 , Issue.6 , pp. 1-11
    • Manolakis, D.1
  • 13
    • 0030617350 scopus 로고    scopus 로고
    • Mapping the distribution of mine tailings in the Coeur d'Alene River Valley, Idaho, through the use of a constrained energy minimization technique
    • DOI 10.1016/S0034-4257(96)00080-6, PII S0034425796000806
    • W. H. Farrand and J. C. Harsanyi, Mapping the distribution of mine tailings in the coeur dAlene river valley, Idaho, through the Use of a Constrained Energy Minimization Technique., Remote Sens. Environ. 59 (1), 64-76 (1997). 10.1016/S0034-4257(96)00080-6 (Pubitemid 27079016)
    • (1997) Remote Sensing of Environment , vol.59 , Issue.1 , pp. 64-76
    • Farrand, W.H.1    Harsanyi, J.C.2
  • 14
    • 0032658498 scopus 로고    scopus 로고
    • The CFAR adaptive subspace detector is a scale-invariant GLRT
    • 10.1109/78.782198
    • S. Kraut and L. L. Scharf, The CFAR adaptive subspace detector is a scale-invariant GLRT., IEEE Trans. Signal Process. 47 (9), 2538-2541 (1999). 10.1109/78.782198
    • (1999) IEEE Trans. Signal Process. , vol.47 , Issue.9 , pp. 2538-2541
    • Kraut, S.1    Scharf, L.L.2
  • 15
    • 0035124109 scopus 로고    scopus 로고
    • Adaptive subspace detectors
    • DOI 10.1109/78.890324
    • S. Kraut, L. L. Scharf, and L. T. McWhorter, Adaptive subspace detectors., IEEE Trans. Signal Process. 49 (1), 1-16 (2001). 10.1109/78.890324 (Pubitemid 32137119)
    • (2001) IEEE Transactions on Signal Processing , vol.49 , Issue.1 , pp. 1-16
    • Kraut, S.1    Scharf, L.L.2
  • 16
    • 0029291208 scopus 로고
    • Asymptotically optimum radar detection in compound-Gaussian clutter
    • 10.1109/7.381910
    • E. Conte, M. Lops, and G. Ricci, Asymptotically optimum radar detection in compound-Gaussian clutter., IEEE Trans. Aerosp. Electron. Syst. 31 (2), 617-625 (1995). 10.1109/7.381910
    • (1995) IEEE Trans. Aerosp. Electron. Syst. , vol.31 , Issue.2 , pp. 617-625
    • Conte, E.1    Lops, M.2    Ricci, G.3
  • 17
    • 0030653763 scopus 로고    scopus 로고
    • Adaptive matched subspace detectors and adaptive coherence
    • in, Pacific Grove, CA, USA
    • L. L. Scharf and L. T. McWhorter, Adaptive matched subspace detectors and adaptive coherence., in Proc. 30th Asilomar Conf. Signals and Systems, IEEE, Pacific Grove, CA, USA, pp. 1114-1117 (1996).
    • (1996) Proc. 30th Asilomar Conf. Signals and Systems, IEEE , pp. 1114-1117
    • Scharf, L.L.1    McWhorter, L.T.2
  • 19
    • 44949202638 scopus 로고    scopus 로고
    • Kernel-Based Constrained Energy Minimization (K-CEM)
    • 10.1117/12.782221
    • X. Jiao and C. I. Chang, Kernel-Based Constrained Energy Minimization (K-CEM)., Proc. SPIE 6966, 1-11 (2008). 10.1117/12.782221
    • (2008) Proc. SPIE , vol.6966 , pp. 1-11
    • Jiao, X.1    Chang, C.I.2
  • 21
    • 0036613261 scopus 로고    scopus 로고
    • Anomaly detection and classification for hyperspectral imagery
    • 10.1109/TGRS.2002.800280
    • C. I. Chang and S. S. Chiang, Anomaly detection and classification for hyperspectral imagery., IEEE Transactions. Geosci. Remote Sens. 40 (6), 1314-1325 (2002). 10.1109/TGRS.2002.800280
    • (2002) IEEE Transactions. Geosci. Remote Sens. , vol.40 , Issue.6 , pp. 1314-1325
    • Chang, C.I.1    Chiang, S.S.2
  • 24
    • 44949150291 scopus 로고    scopus 로고
    • How to design synthetic images to validate and evaluate hyperspectral imaging algorithms
    • 10.1117/12.777717
    • Y. C. C. Chang, H. Ren, C. I. Chang, and R. S. Rand, How to design synthetic images to validate and evaluate hyperspectral imaging algorithms., Proc. SPIE 6966, 1-11 (2008). 10.1117/12.777717
    • (2008) Proc. SPIE , vol.6966 , pp. 1-11
    • Chang, Y.C.C.1    Ren, H.2    Chang, C.I.3    Rand, R.S.4
  • 25
    • 13144293109 scopus 로고    scopus 로고
    • Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery
    • DOI 10.1109/TGRS.2004.841487
    • H. Kwon and N. M. Nasrabidi, Kernel RX algorithm: A nonlinear anomaly detector for hyperspectral imagery., in IEEE Trans. Geosci. Remote Sens. 43 (2), 388-397 (2005). 10.1109/TGRS.2004.841487 (Pubitemid 40178510)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.2 , pp. 388-397
    • Kwon, H.1    Nasrabadi, N.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.