-
1
-
-
8144231500
-
A survey of spectral unmixing algorithms
-
N. Keshava, "A survey of spectral unmixing algorithms," Lincoln Laboratory Journal, vol. 14, no. 1, pp. 55-78, 2003.
-
(2003)
Lincoln Laboratory Journal
, vol.14
, Issue.1
, pp. 55-78
-
-
Keshava, N.1
-
2
-
-
57049104040
-
A weighted linear spectral mixture analysis approach to address endmember variability in agricultural production systems
-
Jan.
-
B. Somers, S. Delalieux, J. Stuckens,W.W. Verstraeten, and P. Coppin, "A weighted linear spectral mixture analysis approach to address endmember variability in agricultural production systems," Int. J. Remote Sens., vol. 30, no. 1, pp. 139-147, Jan. 2009.
-
(2009)
Int. J. Remote Sens.
, vol.30
, Issue.1
, pp. 139-147
-
-
Somers, B.1
Delalieux, S.2
Stuckens, J.3
Verstraeten, W.W.4
Coppin, P.5
-
3
-
-
0027334540
-
Linear mixing and the estimation of ground cover proportions
-
J. J. Settle and N. A. Drake, "Linear mixing and the estimation of ground cover proportions," Int. J. Remote Sens., vol. 14, no. 6, pp. 1159-1177, Apr. 1993. (Pubitemid 23384230)
-
(1993)
International Journal of Remote Sensing
, vol.14
, Issue.6
, pp. 1159-1177
-
-
Settle, J.J.1
Drake, N.A.2
-
4
-
-
85032751921
-
Anomaly detection from hyperspectral imagery
-
DOI 10.1109/79.974730
-
D. Stein, S. G. Beaven, L. E. Hoff, E. M. Winter, A. P. Schaum, and A. D. Stocker, "Anomaly detection from hyperspectral imagery," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 58-69, Jan. 2002. (Pubitemid 34237208)
-
(2002)
IEEE Signal Processing Magazine
, vol.19
, Issue.1
, pp. 58-69
-
-
Stein, D.W.J.1
Beaven, S.G.2
Hoff, L.E.3
Winter, E.M.4
Schaum, A.P.5
Stocker, A.D.6
-
5
-
-
72049109460
-
A variable splitting augmented Lagrangian approach to linear spectral unmixing
-
st IEEE WHISPERS, 2009, pp. 1-4.
-
(2009)
stIEEE WHISPERS
, pp. 1-4
-
-
Bioucas-Dias, J.1
-
6
-
-
46749145829
-
Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery
-
Jul.
-
N. Dobigeon, J. Y. Tourneret, and C. I. Chang, "Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery," IEEE Trans. Signal Process., vol. 56, no. 7, pp. 2684-2695, Jul. 2008.
-
(2008)
IEEE Trans. Signal Process.
, vol.56
, Issue.7
, pp. 2684-2695
-
-
Dobigeon, N.1
Tourneret, J.Y.2
Chang, C.I.3
-
8
-
-
36348990884
-
Spectral and spatial complexity-based hyperspectral unmixing
-
DOI 10.1109/TGRS.2007.898443
-
S. Jia and Y. Qian, "Spectral and spatial complexity-based hyperspectral unmixing," IEEE Trans. Geosci. Remote Sensing, vol. 45, no. 12, pp. 3867-3879, Dec. 2007. (Pubitemid 350157825)
-
(2007)
IEEE Transactions on Geoscience and Remote Sensing
, vol.45
, Issue.12
, pp. 3867-3879
-
-
Jia, S.1
Qian, Y.2
-
9
-
-
0033310314
-
N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data
-
Pasadena, CA, Oct.
-
M. E. Winter, "N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data," in Proc. SPIE Conf. Imag. Spectrom., Pasadena, CA, Oct. 1999, pp. 266-275.
-
(1999)
Proc. SPIE Conf. Imag. Spectrom.
, pp. 266-275
-
-
Winter, M.E.1
-
10
-
-
0002596793
-
Mapping target signatures via partial unmixing of AVIRIS data
-
Pasadena, CA, Dec. 9-14
-
J. M. Boardman, F. A. Kruse, and R. O. Green, "Mapping target signatures via partial unmixing of AVIRIS data," in Proc. Summaries JPL Ariborne Earth Sci. Workshop, Pasadena, CA, Dec. 9-14, 1995, vol. 1, pp. 23-26.
-
(1995)
Proc. Summaries JPL Ariborne Earth Sci. Workshop
, vol.1
, pp. 23-26
-
-
Boardman, J.M.1
Kruse, F.A.2
Green, R.O.3
-
11
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
DOI 10.1109/TGRS.2005.844293
-
J. Nascimento and J. Bioucas-Dias, "Vertex component analysis: A fast algorithm to unmix hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005. (Pubitemid 40476033)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.M.P.1
Dias, J.M.B.2
-
12
-
-
84887415911
-
A new growing method for simplex-based endmember extraction algorithm
-
Oct.
-
C. I. Chang, C.-C. Wu, W.-M. Liu, and Y.-C. Ouyang, "A new growing method for simplex-based endmember extraction algorithm," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2804-2819, Oct. 2006.
-
(2006)
IEEE Trans. Geosci. Remote Sens.
, vol.44
, Issue.10
, pp. 2804-2819
-
-
Chang, C.I.1
Wu, C.-C.2
Liu, W.-M.3
Ouyang, Y.-C.4
-
13
-
-
33847733865
-
Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
-
DOI 10.1109/TGRS.2006.888466
-
L. Miao and H. Qi, "Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007. (Pubitemid 46375748)
-
(2007)
IEEE Transactions on Geoscience and Remote Sensing
, vol.45
, Issue.3
, pp. 765-777
-
-
Miao, L.1
Qi, H.2
-
14
-
-
58149131252
-
Constrained nonnegative matrix factorization for hyperspectral unmixing
-
Jan.
-
S. Jia and Y. Qian, "Constrained nonnegative matrix factorization for hyperspectral unmixing," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009.
-
(2009)
IEEE Trans. Geosci. Remote Sens.
, vol.47
, Issue.1
, pp. 161-173
-
-
Jia, S.1
Qian, Y.2
-
15
-
-
70350488509
-
A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing
-
Nov.
-
T. H. Chan, C.-Y. Chi, Y.-M. Huang, and W.-K. Ma, "A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing," IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009.
-
(2009)
IEEE Trans. Signal Process.
, vol.57
, Issue.11
, pp. 4418-4432
-
-
Chan, T.H.1
Chi, C.-Y.2
Huang, Y.-M.3
Ma, W.-K.4
-
16
-
-
67649830104
-
Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data
-
Boston, MA, Aug. 8-12
-
J. Li and J. Bioucas-Dias, "Minimum volume simplex analysis: A fast algorithm to unmix hyperspectral data," in Proc. IEEE Geosci. Remote Sens. Symp., Boston, MA, Aug. 8-12, 2008, vol. 4, pp. III-250-III-253.
-
(2008)
Proc. IEEE Geosci. Remote Sens. Symp.
, vol.4
-
-
Li, J.1
Bioucas-Dias, J.2
-
17
-
-
7044222060
-
ICE: A statistical approach to identifying endmembers in hyperspectral images
-
Oct.
-
M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and J. F. Huntington, "ICE: A statistical approach to identifying endmembers in hyperspectral images," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2085-2095, Oct. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.10
, pp. 2085-2095
-
-
Berman, M.1
Kiiveri, H.2
Lagerstrom, R.3
Ernst, A.4
Dunne, R.5
Huntington, J.F.6
-
18
-
-
0028427066
-
Minimum-volume transforms for remotely sensed data
-
May
-
M. D. Craig, "Minimum-volume transforms for remotely sensed data," IEEE Trans. Geosci. Remote Sens., vol. 32, no. 3, pp. 542-552, May 1994.
-
(1994)
IEEE Trans. Geosci. Remote Sens.
, vol.32
, Issue.3
, pp. 542-552
-
-
Craig, M.D.1
-
19
-
-
84875592335
-
Real time N-FINDR processing algorithms for hyperspectral imagery
-
[Online]. Available
-
C. C. Wu, H. M. Chen, and C. I. Chang, "Real time N-FINDR processing algorithms for hyperspectral imagery," J. Real-Time Image Process., 2010. [Online]. Available: http://www.springerlink.com/content/6542658g41xl4168
-
(2010)
J. Real-Time Image Process.
-
-
Wu, C.C.1
Chen, H.M.2
Chang, C.I.3
-
20
-
-
77953753840
-
Fast algorithms to implement N-FINDR for hyperspectral endmember extraction
-
Orlando, FL, Apr. 5-9
-
W. Xiong, C. I. Chang, and K. Kalpakis, "Fast algorithms to implement N-FINDR for hyperspectral endmember extraction," in Proc. SPIE Conf. Algorithms Technol. Multispectral, Hyperspectral, Ultraspectral Imag. XVI, Orlando, FL, Apr. 5-9, 2010, vol. 7695, pp. 76 951Q-1-76 951Q-12.
-
(2010)
Proc. SPIE Conf. Algorithms Technol. Multispectral, Hyperspectral, Ultraspectral Imag. XVI
, vol.7695
-
-
Xiong, W.1
Chang, C.I.2
Kalpakis, K.3
-
22
-
-
33750820859
-
Impact of initialization on design of endmember extraction algorithms
-
DOI 10.1109/TGRS.2006.879538, 1717734
-
A. Plaza and C. I. Chang, "Impact of initialization on design of endmember extraction algorithms," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 11, pp. 3397-3407, Nov. 2006. (Pubitemid 44711681)
-
(2006)
IEEE Transactions on Geoscience and Remote Sensing
, vol.44
, Issue.11
, pp. 3397-3407
-
-
Plaza, A.1
Chang, C.-I.2
-
23
-
-
0000652188
-
Unitary triangularization of a nonsymmetric matrix
-
Oct.
-
A. S. Householder, "Unitary triangularization of a nonsymmetric matrix," J. ACM, vol. 5, no. 4, pp. 339-342, Oct. 1958.
-
(1958)
J. ACM
, vol.5
, Issue.4
, pp. 339-342
-
-
Householder, A.S.1
-
24
-
-
1842481516
-
Estimation of number of spectrally distinct signal sources in hyperspectral imagery
-
Mar.
-
C. I. Chang and Q. Du, "Estimation of number of spectrally distinct signal sources in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004.
-
(2004)
IEEE Trans. Geosci. Remote Sens.
, vol.42
, Issue.3
, pp. 608-619
-
-
Chang, C.I.1
Du, Q.2
-
25
-
-
48849088937
-
Hyperspectral subspace identification
-
Aug.
-
J. Bioucas-Dias and J. Nascimento, "Hyperspectral subspace identification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435-2445, Aug. 2008.
-
(2008)
IEEE Trans. Geosci. Remote Sens.
, vol.46
, Issue.8
, pp. 2435-2445
-
-
Bioucas-Dias, J.1
Nascimento, J.2
-
26
-
-
0022267170
-
Standardized principal components
-
A. Singh and A. Harrison, "Standardized principal components," Int. J. Remote Sens., vol. 6, no. 6, pp. 883-896, 1985.
-
(1985)
Int. J. Remote Sens.
, vol.6
, Issue.6
, pp. 883-896
-
-
Singh, A.1
Harrison, A.2
-
27
-
-
0023854011
-
Transformation for ordering multispectral data in terms of image quality with implications for noise removal
-
DOI 10.1109/36.3001
-
A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, Jan. 1988. (Pubitemid 18596008)
-
(1988)
IEEE Transactions on Geoscience and Remote Sensing
, vol.26
, Issue.1
, pp. 65-74
-
-
Green Andrew, A.1
Berman, M.2
Switzer, P.3
Craig Maurice, D.4
-
28
-
-
0025430387
-
Enhancement of high spectral resolution remote-sensing data by a noise-adjusted principal components transform
-
DOI 10.1109/36.54356
-
J. B. Lee, A. S.Woodyatt, andM. Berman, "Enhancement of high spectral resolution remote sensing data by a noise-adjusted principal components transform," IEEE Trans. Geosci. Remote Sens., vol. 28, no. 3, pp. 295-304, May 1990. (Pubitemid 20702839)
-
(1990)
IEEE Transactions on Geoscience and Remote Sensing
, vol.28
, Issue.3
, pp. 295-304
-
-
Lee James, B.1
Woodyatt A.Stephen2
Berman Mark3
-
29
-
-
0042826822
-
Independent component analysis: Algorithms and applications
-
DOI 10.1016/S0893-6080(00)00026-5, PII S0893608000000265
-
A. Hyvärinen and E. Oja, "Independent component analysis: Algorithms and applications," Neural Netw., vol. 13, no. 4/5, pp. 411-430, May/Jun. 2000. (Pubitemid 30447427)
-
(2000)
Neural Networks
, vol.13
, Issue.4-5
, pp. 411-430
-
-
Hyvarinen, A.1
Oja, E.2
-
30
-
-
33744719449
-
Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis
-
DOI 10.1109/TGRS.2005.863297
-
J. Wang and C. I. Chang, "Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6, pp. 1586-1600, Jun. 2006. (Pubitemid 43824505)
-
(2006)
IEEE Transactions on Geoscience and Remote Sensing
, vol.44
, Issue.6
, pp. 1586-1600
-
-
Wang, J.1
Chang, C.-I.2
-
31
-
-
84855464501
-
-
[Online]
-
[Online]. Avaialble: http://speclab.cr.usgs.gov/
-
-
-
-
32
-
-
67651149491
-
Improved process for use of a simplex growing algorithm for endmember extraction
-
Jul.
-
C. C. Wu, C. S. Lo, and C. I. Chang, "Improved process for use of a simplex growing algorithm for endmember extraction," IEEE Geosci. Remote Sens. Lett., vol. 6, no. 3, pp. 523-527, Jul. 2009.
-
(2009)
IEEE Geosci. Remote Sens. Lett.
, vol.6
, Issue.3
, pp. 523-527
-
-
Wu, C.C.1
Lo, C.S.2
Chang, C.I.3
-
33
-
-
84855421774
-
-
[Online]
-
[Online]. Available: http://aviris.jpl.nasa.gov/
-
-
-
-
34
-
-
0035273728
-
Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
-
DOI 10.1109/36.911111, PII S0196289201020861
-
D. Heinz and C. I. Chang, "Fully constrained least squares linear mixture analysis for material quantification in hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001. (Pubitemid 32400422)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.3
, pp. 529-545
-
-
Heinz, D.C.1
Chang, C.-I.2
-
35
-
-
0002433940
-
Ground-truthing AVIRIS mineral mapping at cuprite, Nevada
-
G. Swayze, R. Clark, S. Sutley, and A. Gallagher, "Ground-truthing AVIRIS mineral mapping at cuprite, Nevada," in Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop, 1992, pp. 47-49.
-
(1992)
Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop
, pp. 47-49
-
-
Swayze, G.1
Clark, R.2
Sutley, S.3
Gallagher, A.4
-
36
-
-
70350611305
-
Hyperspectral signal subspace estimation
-
DOI 10.1109/IGARSS.2007.4423531, 4423531, 2007 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2007
-
J. Nascimento and J. Bioucas-Dias, "Hyperspectral signal subspace estimation," in Proc. IGARSS, Barcelona, Spain, Jul. 2007, pp. 3225-3228. (Pubitemid 351243436)
-
(2008)
International Geoscience and Remote Sensing Symposium (IGARSS)
, pp. 3225-3228
-
-
Nascimento, J.M.P.1
Bioucas-Dias, J.M.2
-
37
-
-
0002671829
-
On the complexity of computing determinants
-
Proc. 5th Asian Symp. Comput. Math., K. Shirayanagi and K. Yokoyama, Eds., Singapore
-
E. Kaltofen and G. Villard, "On the complexity of computing determinants," in Proc. 5th Asian Symp. Comput. Math., vol. 9, Lecture Notes Ser. Comput., K. Shirayanagi and K. Yokoyama, Eds., Singapore, 2001, pp. 13-27.
-
(2001)
Lecture Notes Ser. Comput.
, vol.9
, pp. 13-27
-
-
Kaltofen, E.1
Villard, G.2
|