메뉴 건너뛰기




Volumn 41, Issue 7, 2014, Pages 3351-3366

Dynamic clustering of histogram data based on adaptive squared Wasserstein distances

Author keywords

Adaptive distance; Histogram data; Partitioning clustering method; Symbolic data analysis; Wasserstein distance

Indexed keywords

ADAPTIVE DISTANCE; CLUSTERING METHODS; HISTOGRAM DATA; SYMBOLIC DATA ANALYSIS; WASSERSTEIN DISTANCE;

EID: 84891600144     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2013.12.001     Document Type: Article
Times cited : (41)

References (40)
  • 1
    • 79952545400 scopus 로고    scopus 로고
    • A k-means type clustering algorithm for subspace clustering of mixed numeric and categorical datasets
    • A. Ahmad, and L. Dey A k-means type clustering algorithm for subspace clustering of mixed numeric and categorical datasets Pattern Recognition Letters 32 2011 1062 1069
    • (2011) Pattern Recognition Letters , vol.32 , pp. 1062-1069
    • Ahmad, A.1    Dey, L.2
  • 2
    • 0004077589 scopus 로고    scopus 로고
    • Exploratory methods for extracting statistical information from complex data Springer Berlin
    • H.H. Bock, and E. Diday Analysis of symbolic data Exploratory methods for extracting statistical information from complex data 2000 Springer Berlin
    • (2000) Analysis of Symbolic Data
    • Bock, H.H.1    Diday, E.2
  • 6
    • 1842762839 scopus 로고    scopus 로고
    • An optimization algorithm for clustering using weighted dissimilarity measures
    • DOI 10.1016/j.patcog.2003.11.003, PII S0031320303004035
    • E.Y. Chan, W.K. Ching, M.K. Ng, and J.Z. Huang An optimization algorithm for clustering using weighted dissimilarity measures Pattern Recognition 37 2004 943 952 (Pubitemid 38473837)
    • (2004) Pattern Recognition , vol.37 , Issue.5 , pp. 943-952
    • Chan, E.Y.1    Ching, W.K.2    Ng, M.K.3    Huang, J.Z.4
  • 7
    • 80052747011 scopus 로고    scopus 로고
    • A feature group weighting method for subspace clustering of high-dimensional data
    • X. Chen, Y. Ye, X. Xu, and J.Z. Huang A feature group weighting method for subspace clustering of high-dimensional data Pattern Recognition 45 2012 434 446
    • (2012) Pattern Recognition , vol.45 , pp. 434-446
    • Chen, X.1    Ye, Y.2    Xu, X.3    Huang, J.Z.4
  • 8
    • 0000797976 scopus 로고
    • A class of Wasserstein metrics for probability distributions
    • R.G. Clark, and M.S. Rae A class of Wasserstein metrics for probability distributions Michigan Mathematical Journal 31 2 1984 231 240
    • (1984) Michigan Mathematical Journal , vol.31 , Issue.2 , pp. 231-240
    • Clark, R.G.1    Rae, M.S.2
  • 11
    • 75449087623 scopus 로고    scopus 로고
    • Unsupervised pattern recognition models for mixed feature-type symbolic data
    • F.A.T. De Carvalho, and R.M.C.R. De Souza Unsupervised pattern recognition models for mixed feature-type symbolic data Pattern Recognition Letters 31 2010 430 443
    • (2010) Pattern Recognition Letters , vol.31 , pp. 430-443
    • De Carvalho, F.A.T.1    De Souza, R.M.C.R.2
  • 13
    • 62349117695 scopus 로고    scopus 로고
    • Partitional clustering algorithms for symbolic interval data based on single adaptive distances
    • F.A.T. De Carvalho, and Y. Lechevallier Partitional clustering algorithms for symbolic interval data based on single adaptive distances Pattern Recognition 42 2009 1223 1236
    • (2009) Pattern Recognition , vol.42 , pp. 1223-1236
    • De Carvalho, F.A.T.1    Lechevallier, Y.2
  • 14
    • 70449699648 scopus 로고    scopus 로고
    • Enhanced soft subspace clustering integrating within-cluster and between-cluster information
    • Z. Deng, K.S. Choi, F.L. Chung, and S. Wang Enhanced soft subspace clustering integrating within-cluster and between-cluster information Pattern Recognition 43 2010 767 781
    • (2010) Pattern Recognition , vol.43 , pp. 767-781
    • Deng, Z.1    Choi, K.S.2    Chung, F.L.3    Wang, S.4
  • 19
    • 0346847567 scopus 로고    scopus 로고
    • Unsupervised learning of prototypes and attribute weights
    • DOI 10.1016/j.patcog.2003.08.002
    • H. Frigui, and O. Nasraoui Unsupervised learning of prototypes and attribute weights Pattern Recognition 37 2004 567 581 (Pubitemid 38003094)
    • (2004) Pattern Recognition , vol.37 , Issue.3 , pp. 567-581
    • Frigui, H.1    Nasraoui, O.2
  • 23
    • 80051802764 scopus 로고    scopus 로고
    • Optimal histogram representation of large data sets: Fisher vs piecewise linear approximation
    • M. Noirhomme-Fraiture, G. Venturini, Cépaduès- Éditions
    • A. Irpino, and E. Romano Optimal histogram representation of large data sets: Fisher vs piecewise linear approximation M. Noirhomme-Fraiture, G. Venturini, EGC, volume RNTI-E-9 of Revue des Nouvelles Technologies de l'Information 2007 Cépaduès-Éditions 99 110
    • (2007) EGC, Volume RNTI-E-9 of Revue des Nouvelles Technologies de l'Information , pp. 99-110
    • Irpino, A.1    Romano, E.2
  • 24
    • 58949098840 scopus 로고    scopus 로고
    • A new Wasserstein based distance for the hierarchical clustering of histogram symbolic data
    • V. Batanjeli, H. Bock, A. Ferligoj, A. Ziberna, Springer Berlin
    • A. Irpino, and R. Verde A new Wasserstein based distance for the hierarchical clustering of histogram symbolic data V. Batanjeli, H. Bock, A. Ferligoj, A. Ziberna, Data science and classification 2006 Springer Berlin 185 192
    • (2006) Data Science and Classification , pp. 185-192
    • Irpino, A.1    Verde, R.2
  • 25
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond k-means
    • A.K. Jain Data clustering: 50 years beyond k-means Pattern Recognition Letters 31 2010 651 666
    • (2010) Pattern Recognition Letters , vol.31 , pp. 651-666
    • Jain, A.K.1
  • 26
    • 34347228671 scopus 로고    scopus 로고
    • An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
    • DOI 10.1109/TKDE.2007.1048
    • L. Jing, M.K. Ng, and J.Z. Huang An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data IEEE Transactions on Knowledge and Data Engineering 19 2007 1026 1041 (Pubitemid 47000341)
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.8 , pp. 1026-1041
    • Jing, L.1    Ng, M.K.2    Huang, J.Z.3
  • 28
    • 0034843832 scopus 로고    scopus 로고
    • The Earth Mover's distance is the Mallows distance: Some insights from statistics
    • E. Levina, and P.J. Bickel The Earth Mover's distance is the Mallows distance: Some insights from statistics Proceedings of the 8th international conference on computer vision Vol. 2 2001 IEEE Computer Society 251 256 (Pubitemid 32795066)
    • (2001) Proceedings of the IEEE International Conference on Computer Vision , vol.2 , pp. 251-256
    • Levina, E.1    Bickel, P.2
  • 30
    • 0000235019 scopus 로고
    • A study of standardization of variables in cluster analysis
    • G.W. Milligan, and M.C. Cooper A study of standardization of variables in cluster analysis Journal of Classification 5 1988 181 204
    • (1988) Journal of Classification , vol.5 , pp. 181-204
    • Milligan, G.W.1    Cooper, M.C.2
  • 31
    • 0034313871 scopus 로고    scopus 로고
    • Earth mover's distance as a metric for image retrieval
    • DOI 10.1023/A:1026543900054
    • Y. Rubner, C. Tomasi, and L.J. Guibas The Earth Mover's distance as a metric for image retrieval International Journal of Computer Vision 40 2000 99 121 (Pubitemid 32136368)
    • (2000) International Journal of Computer Vision , vol.40 , Issue.2 , pp. 99-121
    • Rubner, Y.1    Tomasi, C.2    Guibas, L.J.3
  • 33
    • 84883458663 scopus 로고    scopus 로고
    • Non-hierarchical clustering for distribution-valued data
    • Y. Lechevallier, G. Saporta, Springer Berlin
    • Y. Terada, and H. Yadohisa Non-hierarchical clustering for distribution-valued data Y. Lechevallier, G. Saporta, Proceedings of COMPSTAT 2010 2010 Springer Berlin 1653 1660
    • (2010) Proceedings of COMPSTAT 2010 , pp. 1653-1660
    • Terada, Y.1    Yadohisa, H.2
  • 34
    • 44349127297 scopus 로고    scopus 로고
    • Developing a feature weight self-adjustment mechanism for a k-means clustering algorithm
    • C.Y. Tsai, and C.C. Chiu Developing a feature weight self-adjustment mechanism for a k-means clustering algorithm Computational Statistics and Data Analysis 52 2008 4658 4672
    • (2008) Computational Statistics and Data Analysis , vol.52 , pp. 4658-4672
    • Tsai, C.Y.1    Chiu, C.C.2
  • 37
    • 58949085012 scopus 로고    scopus 로고
    • Dynamic clustering of histogram data: Using the right metric
    • P. Brito, P. Bertrand, G. Cucumel, F. De Carvalho, Springer Berlin
    • R. Verde, and A. Irpino Dynamic clustering of histogram data: Using the right metric P. Brito, P. Bertrand, G. Cucumel, F. De Carvalho, Selected contributions in data analysis and classification 2008 Springer Berlin 123 134
    • (2008) Selected Contributions in Data Analysis and Classification , pp. 123-134
    • Verde, R.1    Irpino, A.2
  • 40
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • DOI 10.1109/TNN.2005.845141
    • R. Xu, and D.I.I. Wunusch Survey of clustering algorithms IEEE Transactions on Neural Networks 16 2005 645 678 (Pubitemid 40718010)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch II, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.