메뉴 건너뛰기




Volumn 71, Issue , 2014, Pages 79-91

A hierarchical modeling approach for clustering probability density functions

Author keywords

Maximum likelihood; Mixture modeling; Pdf clustering

Indexed keywords

ALTERNATIVE CLUSTERING; CLUSTERING SOLUTIONS; DIMENSION REDUCTION; HIERARCHICAL MIXTURES; MIXTURE MODEL; MULTIVARIATE DENSITY; PDF CLUSTERING; SIMULATED EXPERIMENTS;

EID: 84889103123     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2013.04.013     Document Type: Article
Times cited : (12)

References (30)
  • 1
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • J.D. Banfield, and A.E. Raftery Model-based Gaussian and non-Gaussian clustering Biometrics 49 1993 803 821 (Pubitemid 23298358)
    • (1993) Biometrics , vol.49 , Issue.3 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 2
    • 84889094967 scopus 로고    scopus 로고
    • Model-based clustering of high-dimensional data: A review
    • 10.1016/j.csda.2012.12.008
    • C. Bouveyron, and B. Brunet-Samardb Model-based clustering of high-dimensional data: a review Computational Statistics and Data Analysis 71 2014 52 78 10.1016/j.csda.2012.12.008
    • (2014) Computational Statistics and Data Analysis , vol.71 , pp. 52-78
    • Bouveyron, C.1    Brunet-Samardb, B.2
  • 4
    • 77956744789 scopus 로고    scopus 로고
    • A dimensionally reduced finite mixture model for multilevel data
    • D.G. Calò, and C. Viroli A dimensionally reduced finite mixture model for multilevel data Journal of Multivariate Analysis 101 2010 2543 2553
    • (2010) Journal of Multivariate Analysis , vol.101 , pp. 2543-2553
    • Calò, D.G.1    Viroli, C.2
  • 5
    • 84858320203 scopus 로고    scopus 로고
    • Two-stage hierarchical modeling for analysis of subpopulations in conditional distributions
    • I. Chervoneva, T. Zhan, B. Iglewicz, H. Walter, and D.E. Birck Two-stage hierarchical modeling for analysis of subpopulations in conditional distributions Journal of Applied Statistics 39 2012 445 460
    • (2012) Journal of Applied Statistics , vol.39 , pp. 445-460
    • Chervoneva, I.1    Zhan, T.2    Iglewicz, B.3    Walter, H.4    Birck, D.E.5
  • 6
    • 77958046458 scopus 로고    scopus 로고
    • Dimensionality reduction when data are density functions
    • P. Delicado Dimensionality reduction when data are density functions Computational Statistics and Data Analysis 55 2011 401 420
    • (2011) Computational Statistics and Data Analysis , vol.55 , pp. 401-420
    • Delicado, P.1
  • 8
    • 84857629799 scopus 로고    scopus 로고
    • New approaches to nonparametric density estimation and selection of smoothing parameters
    • N. Golyandina, A. Pepelyshev, and A. Steland New approaches to nonparametric density estimation and selection of smoothing parameters Computational Statistics and Data Analysis 56 2012 2206 2218
    • (2012) Computational Statistics and Data Analysis , vol.56 , pp. 2206-2218
    • Golyandina, N.1    Pepelyshev, A.2    Steland, A.3
  • 9
    • 45449099044 scopus 로고    scopus 로고
    • Dynamic clustering of interval data using a Wasserstein-based distance
    • A. Irpino, and R. Verde Dynamic clustering of interval data using a Wasserstein-based distance Pattern Recognition Letters 29 2008 1648 1658
    • (2008) Pattern Recognition Letters , vol.29 , pp. 1648-1658
    • Irpino, A.1    Verde, R.2
  • 12
    • 84955365480 scopus 로고    scopus 로고
    • Mixtures of factor analyzers for the analysis of high-dimensional data
    • K.L. Mengersen, D.M. Titterington, John Wiley and Sons Chichester, UK
    • G.J. McLachlan, J. Baek, and S.I. Rathnayake Mixtures of factor analyzers for the analysis of high-dimensional data K.L. Mengersen, D.M. Titterington, Mixtures: Estimation and Applications 2011 John Wiley and Sons Chichester, UK
    • (2011) Mixtures: Estimation and Applications
    • McLachlan, G.J.1    Baek, J.2    Rathnayake, S.I.3
  • 14
    • 78751536244 scopus 로고    scopus 로고
    • Heteroscedastic factor mixture analysis
    • A. Montanari, and C. Viroli Heteroscedastic factor mixture analysis Statistical Modelling 10 2010 441 460
    • (2010) Statistical Modelling , vol.10 , pp. 441-460
    • Montanari, A.1    Viroli, C.2
  • 18
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz Estimating the dimension of a model Annals of Statistics 6 1978 461 464
    • (1978) Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 21
    • 78650135950 scopus 로고    scopus 로고
    • Multilevel mixed-measurement IRT analysis: An explication and application to self-reported emotions across the world
    • L. Tay, E. Diener, F. Drasgow, and J.K. Vermunt Multilevel mixed-measurement IRT analysis: an explication and application to self-reported emotions across the world Organizational Research Methods 14 2011 177 207
    • (2011) Organizational Research Methods , vol.14 , pp. 177-207
    • Tay, L.1    Diener, E.2    Drasgow, F.3    Vermunt, J.K.4
  • 22
    • 84883458663 scopus 로고    scopus 로고
    • Non-hierarchical clustering for distribution-valued data
    • Lechevallier, Y., Saporta, G. (Eds.)
    • Terada, Y., Yadohisa, H., 2010. Non-hierarchical clustering for distribution-valued data, in: Lechevallier, Y., Saporta, G. (Eds.), Proceedings of COMPSTAT 2010, pp. 1653-1660.
    • (2010) Proceedings of COMPSTAT 2010 , pp. 1653-1660
    • Terada, Y.1    Yadohisa, H.2
  • 24
    • 77952710071 scopus 로고    scopus 로고
    • Comparing Histogram Data Using a Mahalanobis-Wasserstein Distance
    • Brito, P. (Ed.)
    • Verde, R., Irpino, A., 2008. Comparing Histogram Data Using a Mahalanobis-Wasserstein Distance. in: Brito, P. (Ed.), Proceedings of COMPSTAT 2008, pp. 77-89.
    • (2008) Proceedings of COMPSTAT 2008 , pp. 77-89
    • Verde, R.1    Irpino, A.2
  • 25
    • 34247860763 scopus 로고    scopus 로고
    • A hierarchical mixture model for clustering three-way data sets
    • DOI 10.1016/j.csda.2006.08.005, PII S0167947306002659
    • J.K. Vermunt A hierarchical mixture model for clustering three-way data sets Computational Statistics and Data Analysis 51 2007 5368 5376 (Pubitemid 46694014)
    • (2007) Computational Statistics and Data Analysis , vol.51 , Issue.11 , pp. 5368-5376
    • Vermunt, J.K.1
  • 26
    • 78650094499 scopus 로고    scopus 로고
    • Multilevel latent variable modeling: An application in educational testing
    • J.K. Vermunt Multilevel latent variable modeling: an application in educational testing Austrian Journal of Statistics 37 2008 285 299
    • (2008) Austrian Journal of Statistics , vol.37 , pp. 285-299
    • Vermunt, J.K.1
  • 27
    • 36749017004 scopus 로고    scopus 로고
    • Latent class and finite mixture models for multilevel data sets
    • DOI 10.1177/0962280207081238
    • J.K. Vermunt Latent class and finite mixture models for multilevel data sets Statistical Methods in Medical Research 17 2008 33 51 (Pubitemid 351359120)
    • (2008) Statistical Methods in Medical Research , vol.17 , Issue.1 , pp. 33-51
    • Vermunt, J.K.1
  • 28
    • 36448991080 scopus 로고    scopus 로고
    • Hierarchical mixture models for nested data structures
    • C. Weihs, W. Gaul, Springer Heidelberg
    • J.K. Vermunt, and J. Magidson Hierarchical mixture models for nested data structures C. Weihs, W. Gaul, Classification: The Ubiquitous Challenge 2005 Springer Heidelberg 176 183
    • (2005) Classification: The Ubiquitous Challenge , pp. 176-183
    • Vermunt, J.K.1    Magidson, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.