-
2
-
-
0026453958
-
Training a 3-node neural networks is NP-complete
-
Blum A.L., and Rivest R.L. Training a 3-node neural networks is NP-complete. Neural Netw. 5 (1992) 117-127
-
(1992)
Neural Netw.
, vol.5
, pp. 117-127
-
-
Blum, A.L.1
Rivest, R.L.2
-
3
-
-
0035534927
-
A variable-selection heuristic for K-means clustering
-
Brusco M.J., and Cradit J.D. A variable-selection heuristic for K-means clustering. Psychometrika 66 (2001) 249-270
-
(2001)
Psychometrika
, vol.66
, pp. 249-270
-
-
Brusco, M.J.1
Cradit, J.D.2
-
4
-
-
1842762839
-
An optimization algorithm for clustering using weighted dissimilarity measures
-
Chan E.Y., Ching W.K., Ng M.K., and Huang J.Z. An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recognit. 37 (2004) 943-952
-
(2004)
Pattern Recognit.
, vol.37
, pp. 943-952
-
-
Chan, E.Y.1
Ching, W.K.2
Ng, M.K.3
Huang, J.Z.4
-
5
-
-
78149289039
-
-
Dash, M., Choi, K., Scheuermann, P., Liu, H., 2002. Feature selection for clustering - a filter solution. In: Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi, Japan, pp. 115-122
-
Dash, M., Choi, K., Scheuermann, P., Liu, H., 2002. Feature selection for clustering - a filter solution. In: Proceedings of the 2002 IEEE International Conference on Data Mining, Maebashi, Japan, pp. 115-122
-
-
-
-
6
-
-
33947177850
-
Optimal variable weighting for ultrametric and additive tree clustering
-
De Soete G. Optimal variable weighting for ultrametric and additive tree clustering. Quality Quantity 20 (1986) 169-180
-
(1986)
Quality Quantity
, vol.20
, pp. 169-180
-
-
De Soete, G.1
-
7
-
-
0000962917
-
OVWTRE: A program for optimal variable weighting for ultrametric and additive tree fitting
-
De Soete G. OVWTRE: A program for optimal variable weighting for ultrametric and additive tree fitting. J. Classif. 5 (1988) 101-104
-
(1988)
J. Classif.
, vol.5
, pp. 101-104
-
-
De Soete, G.1
-
8
-
-
0002414638
-
Synthesized clustering: A method for amalgamating clustering bases with differential weighting variables
-
Desarbo W.S., Carroll J.D., Clark L.A., and Green P.E. Synthesized clustering: A method for amalgamating clustering bases with differential weighting variables. Psychometrika 49 (1984) 57-78
-
(1984)
Psychometrika
, vol.49
, pp. 57-78
-
-
Desarbo, W.S.1
Carroll, J.D.2
Clark, L.A.3
Green, P.E.4
-
9
-
-
44349147676
-
-
Devaney, M., Ram, A., 1997. Efficient feature selection in conceptual clustering. In: Proceedings of the Fourteenth International Conference on Machine Learning, Nashville, pp. 92-97
-
Devaney, M., Ram, A., 1997. Efficient feature selection in conceptual clustering. In: Proceedings of the Fourteenth International Conference on Machine Learning, Nashville, pp. 92-97
-
-
-
-
10
-
-
33847338032
-
Locally adaptive metrics for clustering high dimensional data
-
Domeniconi C., Gunopulos D., Ma S., Yan B., and Papadopoulos D. Locally adaptive metrics for clustering high dimensional data. Data Min. Knowl. Discov. 14 (2007) 63-97
-
(2007)
Data Min. Knowl. Discov.
, vol.14
, pp. 63-97
-
-
Domeniconi, C.1
Gunopulos, D.2
Ma, S.3
Yan, B.4
Papadopoulos, D.5
-
11
-
-
44349114845
-
-
Dy, J.G., Brodley, C.E., 2000. Feature subset selection and order identification for unsupervised learning. In: Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, pp. 247-254
-
Dy, J.G., Brodley, C.E., 2000. Feature subset selection and order identification for unsupervised learning. In: Proceedings of the Seventeenth International Conference on Machine Learning, Stanford, pp. 247-254
-
-
-
-
12
-
-
44349091905
-
-
Fayyad, U., Reina, C., Bradley, P.S, 1998. Initialization of iterative refinement clustering algorithms. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York, pp. 194-198
-
Fayyad, U., Reina, C., Bradley, P.S, 1998. Initialization of iterative refinement clustering algorithms. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining, New York, pp. 194-198
-
-
-
-
13
-
-
0000014486
-
Cluster analyses of multivariate data: Efficiency versus interpretability of classifications
-
Forgy E.W. Cluster analyses of multivariate data: Efficiency versus interpretability of classifications. Biometrics 21 (1965) 768-769
-
(1965)
Biometrics
, vol.21
, pp. 768-769
-
-
Forgy, E.W.1
-
16
-
-
21844501258
-
Weighting and selection of variables for cluster analysis
-
Gnanadesikan R., Kettenring J.R., and Tsao S.L. Weighting and selection of variables for cluster analysis. J. Classif. 12 (1995) 113-136
-
(1995)
J. Classif.
, vol.12
, pp. 113-136
-
-
Gnanadesikan, R.1
Kettenring, J.R.2
Tsao, S.L.3
-
17
-
-
19044364181
-
Optimising K-means clustering results with standard software packages
-
Hand D.J., and Krzanowski W.J. Optimising K-means clustering results with standard software packages. Comput. Statist. Data Anal. 49 (2005) 969-973
-
(2005)
Comput. Statist. Data Anal.
, vol.49
, pp. 969-973
-
-
Hand, D.J.1
Krzanowski, W.J.2
-
18
-
-
0034819175
-
J-Means: A new local search heuristic for minimum sum of squares clustering
-
Hansen P., and Mladenovi'c N. J-Means: A new local search heuristic for minimum sum of squares clustering. Pattern Recognit. 34 (2001) 405-413
-
(2001)
Pattern Recognit.
, vol.34
, pp. 405-413
-
-
Hansen, P.1
Mladenovi'c, N.2
-
20
-
-
33750336303
-
Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data
-
He Y., Pan W., and Lin J. Cluster analysis using multivariate normal mixture models to detect differential gene expression with microarray data. Comput. Statist. Data Anal. 51 (2006) 641-658
-
(2006)
Comput. Statist. Data Anal.
, vol.51
, pp. 641-658
-
-
He, Y.1
Pan, W.2
Lin, J.3
-
23
-
-
0000008146
-
Comparing partitions
-
Hubert L., and Arabie P. Comparing partitions. J. Classif. 2 (1985) 193-218
-
(1985)
J. Classif.
, vol.2
, pp. 193-218
-
-
Hubert, L.1
Arabie, P.2
-
24
-
-
34347228671
-
An entropy weighting k-Means algorithm for subspace clustering of high-dimensional sparse data
-
Jing L., Ng M.K., and Huang J.Z. An entropy weighting k-Means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans. Knowl. Data Eng. 19 (2007) 1026-1041
-
(2007)
IEEE Trans. Knowl. Data Eng.
, vol.19
, pp. 1026-1041
-
-
Jing, L.1
Ng, M.K.2
Huang, J.Z.3
-
25
-
-
0034593107
-
-
Kim, Y., Street, W.N., Menczer, F., 2000. Feature selection in unsupervised learning via evolutionary search. In: Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining, Boston, pp. 365-369
-
Kim, Y., Street, W.N., Menczer, F., 2000. Feature selection in unsupervised learning via evolutionary search. In: Proceedings of the 6th International Conference on Knowledge Discovery and Data Mining, Boston, pp. 365-369
-
-
-
-
27
-
-
33746671893
-
-
Li, C., Yu, J., 2006. A novel duzzy c-Means clustering algorithm. In: Proceedings of the First International Conference on Rough Set and Knowledge Technology, Chongquing, China, pp. 510-515
-
Li, C., Yu, J., 2006. A novel duzzy c-Means clustering algorithm. In: Proceedings of the First International Conference on Rough Set and Knowledge Technology, Chongquing, China, pp. 510-515
-
-
-
-
28
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
Liu H., and Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Trans. Knowl. Data Eng. 17 (2005) 491-502
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, pp. 491-502
-
-
Liu, H.1
Yu, L.2
-
29
-
-
44349177875
-
-
McQueen, J., 1967. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281-297
-
McQueen, J., 1967. Some methods for classification and analysis of multivariate observations. In: Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281-297
-
-
-
-
30
-
-
0035619721
-
Optimal variable weighting for ultrametric and additive trees and K-means partitioning methods and software
-
Makarenkov V., and Legendre P. Optimal variable weighting for ultrametric and additive trees and K-means partitioning methods and software. J. Classif. 18 (2001) 245-271
-
(2001)
J. Classif.
, vol.18
, pp. 245-271
-
-
Makarenkov, V.1
Legendre, P.2
-
31
-
-
0036937614
-
Performance evaluation of some clustering algorithms and validity indices
-
Maulik U., and Bandyopadhyay S. Performance evaluation of some clustering algorithms and validity indices. IEEE Trans. Pattern Anal. Mach. Intell. 24 (2002) 301-312
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.24
, pp. 301-312
-
-
Maulik, U.1
Bandyopadhyay, S.2
-
34
-
-
0042312608
-
Feature weighting in K-means clustering
-
Modha D.S., and Spangler W.S. Feature weighting in K-means clustering. Mach. Learn. 52 (2003) 217-237
-
(2003)
Mach. Learn.
, vol.52
, pp. 217-237
-
-
Modha, D.S.1
Spangler, W.S.2
-
35
-
-
44349174715
-
-
Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J., 1998. UCI Repository of Machine Learning Databases. URL (http://www.ics.uci.edu/~mlearn /MLSummary.html)
-
Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J., 1998. UCI Repository of Machine Learning Databases. URL (http://www.ics.uci.edu/~mlearn /MLSummary.html)
-
-
-
-
37
-
-
44349132577
-
-
Pelleg, D., Moore, A.W., 2000. X-means: Extending K-means with efficient estimation of the number of clusters. In: Proceedings of the 17th International Conference on Machine Learning, pp. 727-734
-
Pelleg, D., Moore, A.W., 2000. X-means: Extending K-means with efficient estimation of the number of clusters. In: Proceedings of the 17th International Conference on Machine Learning, pp. 727-734
-
-
-
-
39
-
-
33645505223
-
Variable selection for model-based clustering
-
Raftery A.E., and Dean N. Variable selection for model-based clustering. J. Am. Stat. Assoc. 101 (2006) 168-178
-
(2006)
J. Am. Stat. Assoc.
, vol.101
, pp. 168-178
-
-
Raftery, A.E.1
Dean, N.2
-
42
-
-
0031073477
-
A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms
-
Wettschereck D., Aha D.W., and Mohri T. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 11 (1997) 1-5
-
(1997)
Artif. Intell. Rev.
, vol.11
, pp. 1-5
-
-
Wettschereck, D.1
Aha, D.W.2
Mohri, T.3
-
45
-
-
44349188990
-
-
Zhang, B., Hsu, M., Dayal, U., 1999. K-harmonic means-a data clustering algorithm. Technical Report HPL-1999-124, Hewlett Packard Laboratories, Oct. 29 1999
-
Zhang, B., Hsu, M., Dayal, U., 1999. K-harmonic means-a data clustering algorithm. Technical Report HPL-1999-124, Hewlett Packard Laboratories, Oct. 29 1999
-
-
-
|