메뉴 건너뛰기




Volumn 45, Issue 1, 2012, Pages 434-446

A feature group weighting method for subspace clustering of high-dimensional data

Author keywords

Data mining; Feature weighting; High dimensional data analysis; k Means; Subspace clustering

Indexed keywords

CLUSTERING PROCESS; DATA GENERATION; FEATURE GROUPS; FEATURE WEIGHTING; HIGH DIMENSIONAL DATA; K-MEANS; MISSING VALUES; OPTIMIZATION MODELS; OPTIMIZATION PROCESS; REAL LIFE DATA; SUBSPACE CLUSTERING; WEIGHTING METHODS;

EID: 80052747011     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.06.004     Document Type: Article
Times cited : (138)

References (33)
  • 2
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: A review
    • L. Parsons, E. Haque, and H. Liu Subspace clustering for high dimensional data: a review ACM SIGKDD Explorations Newsletter 6 1 2004 90 105
    • (2004) ACM SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 3
    • 67149084291 scopus 로고    scopus 로고
    • Clustering high-dimensional data: A survey on subspace clustering, pattern based clustering, and correlation clustering
    • H. Kriegel, P. Kröger, and A. Zimek Clustering high-dimensional data: a survey on subspace clustering, pattern based clustering, and correlation clustering ACM Transactions on Knowledge Discovery from Data 3 1 2009 1 58
    • (2009) ACM Transactions on Knowledge Discovery from Data , vol.3 , Issue.1 , pp. 1-58
    • Kriegel, H.1    Kröger, P.2    Zimek, A.3
  • 4
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, in: Proceedings of ACM SIGMOD International Conference on Management of Data, Seattle, Washington, USA, 1998, pp. 94105. (Pubitemid 128655960)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 10
    • 28444491389 scopus 로고    scopus 로고
    • On discovery of extremely low-dimensional clusters using semi-supervised projected clustering
    • Proceedings - 21st International Conference on Data Engineering, ICDE 2005
    • K. Yip, D. Cheung, M. Ng, On discovery of extremely low-dimensional clusters using semi-supervised projected clustering, in: Proceedings of the 21st International Conference on Data Engineering, Tokyo, Japan, 2005, pp. 329340. (Pubitemid 41731147)
    • (2005) Proceedings - International Conference on Data Engineering , pp. 329-340
    • Yip, K.Y.1    Cheung, D.W.2    Ng, M.K.3
  • 11
    • 0002414638 scopus 로고
    • Synthesized clustering: A method for amalgamating alternative clustering bases with differential weighting of variables
    • W. DeSarbo, J. Carroll, L. Clark, and P. Green Synthesized clustering: a method for amalgamating alternative clustering bases with differential weighting of variables Psychometrika 49 1 1984 57 78
    • (1984) Psychometrika , vol.49 , Issue.1 , pp. 57-78
    • Desarbo, W.1    Carroll, J.2    Clark, L.3    Green, P.4
  • 12
    • 0002048998 scopus 로고
    • A validation study of a variable weighting algorithm for cluster analysis
    • G. Milligan A validation study of a variable weighting algorithm for cluster analysis Journal of Classification 6 1 1989 53 71
    • (1989) Journal of Classification , vol.6 , Issue.1 , pp. 53-71
    • Milligan, G.1
  • 13
    • 0042312608 scopus 로고    scopus 로고
    • Feature weighting in k-means clustering
    • D. Modha, and W. Spangler Feature weighting in k-means clustering Machine Learning 52 3 2003 217 237
    • (2003) Machine Learning , vol.52 , Issue.3 , pp. 217-237
    • Modha, D.1    Spangler, W.2
  • 14
    • 1842762839 scopus 로고    scopus 로고
    • An optimization algorithm for clustering using weighted dissimilarity measures
    • DOI 10.1016/j.patcog.2003.11.003, PII S0031320303004035
    • E.Y. Chan, W.-K. Ching, M.K. Ng, and J.Z. Huang An optimization algorithm for clustering using weighted dissimilarity measures Pattern Recognition 37 5 2004 943 952 (Pubitemid 38473837)
    • (2004) Pattern Recognition , vol.37 , Issue.5 , pp. 943-952
    • Chan, E.Y.1    Ching, W.K.2    Ng, M.K.3    Huang, J.Z.4
  • 16
    • 0346847567 scopus 로고    scopus 로고
    • Unsupervised learning of prototypes and attribute weights
    • DOI 10.1016/j.patcog.2003.08.002
    • H. Frigui, and O. Nasraoui Unsupervised learning of prototypes and attribute weights Pattern Recognition 37 3 2004 567 581 (Pubitemid 38003094)
    • (2004) Pattern Recognition , vol.37 , Issue.3 , pp. 567-581
    • Frigui, H.1    Nasraoui, O.2
  • 21
    • 34347228671 scopus 로고    scopus 로고
    • An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
    • DOI 10.1109/TKDE.2007.1048
    • L. Jing, M. Ng, and Z. Huang An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data IEEE Transactions on Knowledge and Data Engineering 19 8 2007 1026 1041 (Pubitemid 47000341)
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.8 , pp. 1026-1041
    • Jing, L.1    Ng, M.K.2    Huang, J.Z.3
  • 23
    • 44349127297 scopus 로고    scopus 로고
    • Developing a feature weight self-adjustment mechanism for a k-means clustering algorithm
    • C.-Y. Tsai, and C.-C. Chiu Developing a feature weight self-adjustment mechanism for a k-means clustering algorithm Computational Statistics & Data Analysis 52 10 2008 4658 4672
    • (2008) Computational Statistics & Data Analysis , vol.52 , Issue.10 , pp. 4658-4672
    • Tsai, C.-Y.1    Chiu, C.-C.2
  • 24
    • 77952760641 scopus 로고    scopus 로고
    • Constrained locally weighted clustering
    • Auckland, New Zealand
    • H. Cheng, K.A. Hua, K. Vu, Constrained locally weighted clustering, in: Proceedings of the VLDB Endowment, vol. 1, Auckland, New Zealand, 2008, pp. 90101.
    • (2008) Proceedings of the VLDB Endowment , vol.1 , pp. 90-101
    • Cheng, H.1    Hua, K.A.2    Vu, K.3
  • 26
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Z. Huang Extensions to the k-means algorithms for clustering large data sets with categorical values Data Mining and Knowledge Discovery 2 3 1998 283 304 (Pubitemid 128695480)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 27
    • 0000710590 scopus 로고
    • A preliminary study of optimal variable weighting in k-means clustering
    • P. Green, J. Kim, and F. Carmone A preliminary study of optimal variable weighting in k-means clustering Journal of Classification 7 2 1990 271 285
    • (1990) Journal of Classification , vol.7 , Issue.2 , pp. 271-285
    • Green, P.1    Kim, J.2    Carmone, F.3
  • 28
    • 33645992615 scopus 로고    scopus 로고
    • Model-based subspace clustering
    • P. Hoff Model-based subspace clustering Bayesian Analysis 1 2 2006 321 344
    • (2006) Bayesian Analysis , vol.1 , Issue.2 , pp. 321-344
    • Hoff, P.1
  • 29
    • 70449699648 scopus 로고    scopus 로고
    • Enhanced soft subspace clustering integrating within-cluster and between-cluster information
    • Z. Deng, K. Choi, F. Chung, and S. Wang Enhanced soft subspace clustering integrating within-cluster and between-cluster information Pattern Recognition 43 3 2010 767 781
    • (2010) Pattern Recognition , vol.43 , Issue.3 , pp. 767-781
    • Deng, Z.1    Choi, K.2    Chung, F.3    Wang, S.4
  • 31
    • 0018910525 scopus 로고
    • The validation of four ultrametric clustering algorithms
    • DOI 10.1016/0031-3203(80)90001-1
    • G. Milligan, and P. Isaac The validation of four ultrametric clustering algorithms Pattern Recognition 12 2 1980 41 50 (Pubitemid 10117358)
    • (1980) Pattern Recognition , vol.12 , Issue.2 , pp. 41-50
    • Milligan, G.W.1    Isaac, P.D.2
  • 32
    • 0031270377 scopus 로고    scopus 로고
    • A comparative study of clustering methods
    • PII S0167739X97000186
    • M. Zait, and H. Messatfa A comparative study of clustering methods Future Generation Computer Systems 13 23 1997 149 159 (Pubitemid 127403229)
    • (1997) Future Generation Computer Systems , vol.13 , Issue.2-3 , pp. 149-159
    • Zait, M.1    Messatfa, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.