메뉴 건너뛰기




Volumn 43, Issue 3, 2010, Pages 767-781

Enhanced soft subspace clustering integrating within-cluster and between-cluster information

Author keywords

insensitive distance; Gene expression clustering analysis; Soft subspace; Subspace clustering; Texture image segmentation; Weighted clustering

Indexed keywords

CANCER GENE EXPRESSION; CLASS INFORMATION; CLUSTER SEPARATION; DATA SETS; EXPERIMENTAL STUDIES; GENE EXPRESSION CLUSTERING; HIGH DIMENSIONAL DATASETS; HIGH-DIMENSIONAL; NOVEL CLUSTERING; OBJECTIVE FUNCTIONS; OPTIMIZATION OBJECTIVE FUNCTION; SUBSPACE CLUSTERING; SYNTHETIC DATASETS; TEXTURE IMAGE; TEXTURE IMAGE SEGMENTATION;

EID: 70449699648     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2009.09.010     Document Type: Article
Times cited : (228)

References (49)
  • 2
    • 0036120047 scopus 로고    scopus 로고
    • Projective ART for clustering data sets in high dimensional spaces
    • Cao Y., and Wu J. Projective ART for clustering data sets in high dimensional spaces. Neural Networks 15 (2002) 105-120
    • (2002) Neural Networks , vol.15 , pp. 105-120
    • Cao, Y.1    Wu, J.2
  • 4
    • 17044376078 scopus 로고    scopus 로고
    • Subspace clustering for high dimensional data: a review
    • Parsons L., Haque E., and Liu H. Subspace clustering for high dimensional data: a review. SIGKDD Explorations 6 1 (2004) 90-105
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 90-105
    • Parsons, L.1    Haque, E.2    Liu, H.3
  • 7
    • 70449708273 scopus 로고    scopus 로고
    • S. Goil, H. Nagesh, A. Choudhary, Mafia: efficient and scalable subspace clustering for very large data sets, Technical Report CPDC-TR-9906-010, Northwest University, 1999.
    • S. Goil, H. Nagesh, A. Choudhary, Mafia: efficient and scalable subspace clustering for very large data sets, Technical Report CPDC-TR-9906-010, Northwest University, 1999.
  • 11
    • 0036361164 scopus 로고    scopus 로고
    • C.M. Procopiuc, M. Jones, P.K. Agarwal, T.M. Murali, A Monte Carlo algorithm for fast projective clustering, in: Proceedings of the ACM SIGMOD Conference on Management of Data, 2002, pp. 418-427.
    • C.M. Procopiuc, M. Jones, P.K. Agarwal, T.M. Murali, A Monte Carlo algorithm for fast projective clustering, in: Proceedings of the ACM SIGMOD Conference on Management of Data, 2002, pp. 418-427.
  • 12
    • 0036211103 scopus 로고    scopus 로고
    • J. Yang, W. Wang, H. Wang, P. Yu, δ-clusters: Capturing subspace correlation in a large data set, in: Proceedings of the 18th International Conference on Data Engineering, 2002, pp. 517-528.
    • J. Yang, W. Wang, H. Wang, P. Yu, δ-clusters: Capturing subspace correlation in a large data set, in: Proceedings of the 18th International Conference on Data Engineering, 2002, pp. 517-528.
  • 13
    • 13844297591 scopus 로고    scopus 로고
    • A practical projected clustering algorithm
    • Yip K.Y., Cheung D.W., and Ng M.K. A practical projected clustering algorithm. IEEE Trans. Knowl. Data Eng. 16 11 (2004) 1387-1397
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , Issue.11 , pp. 1387-1397
    • Yip, K.Y.1    Cheung, D.W.2    Ng, M.K.3
  • 15
    • 33947177850 scopus 로고
    • Optimal variable weighting for ultrametric and additive tree clustering
    • De Soete G. Optimal variable weighting for ultrametric and additive tree clustering. Qual. Quantity 20 (1986) 169-180
    • (1986) Qual. Quantity , vol.20 , pp. 169-180
    • De Soete, G.1
  • 16
    • 0000962917 scopus 로고
    • OVWTRE: a program for optimal variable weighting for ultrametric and additive tree fitting
    • De Soete G. OVWTRE: a program for optimal variable weighting for ultrametric and additive tree fitting. J. Classification 5 (1988) 101-104
    • (1988) J. Classification , vol.5 , pp. 101-104
    • De Soete, G.1
  • 17
    • 0035619721 scopus 로고    scopus 로고
    • Optimal variable weighting for ultrametric and additive trees and k-means partitioning: methods and software
    • Makarenkov V., and Legendre P. Optimal variable weighting for ultrametric and additive trees and k-means partitioning: methods and software. J. Classification 18 (2001) 245-271
    • (2001) J. Classification , vol.18 , pp. 245-271
    • Makarenkov, V.1    Legendre, P.2
  • 19
    • 1842762839 scopus 로고    scopus 로고
    • An optimization algorithm for clustering using weighted dissimilarity measures
    • Chan Y., Ching W., Ng M.K., and Huang J.Z. An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recognition 37 5 (2004) 943-952
    • (2004) Pattern Recognition , vol.37 , Issue.5 , pp. 943-952
    • Chan, Y.1    Ching, W.2    Ng, M.K.3    Huang, J.Z.4
  • 20
    • 0346847567 scopus 로고    scopus 로고
    • Unsupervised learning of prototypes and attribute weights
    • Frigui H., and Nasraoui O. Unsupervised learning of prototypes and attribute weights. Pattern Recognition 37 3 (2004) 567-581
    • (2004) Pattern Recognition , vol.37 , Issue.3 , pp. 567-581
    • Frigui, H.1    Nasraoui, O.2
  • 21
    • 13444303569 scopus 로고    scopus 로고
    • Simultaneous Clustering and Dynamic Keyword Weighting for Text Documents
    • Berry M. (Ed), Springer, Berlin
    • Frigui H., and Nasraoui O. Simultaneous Clustering and Dynamic Keyword Weighting for Text Documents. In: Berry M. (Ed). Survey of Text Mining (2004), Springer, Berlin 45-70
    • (2004) Survey of Text Mining , pp. 45-70
    • Frigui, H.1    Nasraoui, O.2
  • 23
    • 8644255832 scopus 로고    scopus 로고
    • Clustering objects on subsets of attributes
    • Friedman J.H., and Meulman J.J. Clustering objects on subsets of attributes. J. R. Stat. Soc. B 66 4 (2004) 815-849
    • (2004) J. R. Stat. Soc. B , vol.66 , Issue.4 , pp. 815-849
    • Friedman, J.H.1    Meulman, J.J.2
  • 25
    • 33749402881 scopus 로고    scopus 로고
    • A fuzzy subspace algorithm for clustering high dimensional data
    • X. Li, O. Zaiane, Z. Li Eds, Springer, Berlin
    • G.J. Gan, J.H. Wu, Z.J. Yang, A fuzzy subspace algorithm for clustering high dimensional data, in: X. Li, O. Zaiane, Z. Li (Eds.), Lecture Notes in Artificial Intelligence, vol. 4093, Springer, Berlin, 2006, pp. 271-278.
    • (2006) Lecture Notes in Artificial Intelligence , vol.4093 , pp. 271-278
    • Gan, G.J.1    Wu, J.H.2    Yang, Z.J.3
  • 26
    • 38949102340 scopus 로고    scopus 로고
    • A convergence theorem for the fuzzy subspace clustering (FSC) algorithm
    • Gan G.J., and Wu J.H. A convergence theorem for the fuzzy subspace clustering (FSC) algorithm. Pattern Recognition 41 (2008) 1939-1947
    • (2008) Pattern Recognition , vol.41 , pp. 1939-1947
    • Gan, G.J.1    Wu, J.H.2
  • 27
    • 34347228671 scopus 로고    scopus 로고
    • An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data
    • Jing L.P., Ng M.K., and Huang Z.X. An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans. Knowl. Data Eng. 19 8 (2007) 1026-1041
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.8 , pp. 1026-1041
    • Jing, L.P.1    Ng, M.K.2    Huang, Z.X.3
  • 29
    • 14644429109 scopus 로고    scopus 로고
    • A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests
    • Wu K.L., Yu J., and Yang M.S. A novel fuzzy clustering algorithm based on a fuzzy scatter matrix with optimality tests. Pattern Recognition Lett. 26 5 (2005) 639-652
    • (2005) Pattern Recognition Lett. , vol.26 , Issue.5 , pp. 639-652
    • Wu, K.L.1    Yu, J.2    Yang, M.S.3
  • 30
    • 33244495420 scopus 로고    scopus 로고
    • Towards a robust clustering
    • Leski J.M. Towards a robust clustering. Fuzzy Sets Syst. 137 2 (2003) 191-196
    • (2003) Fuzzy Sets Syst. , vol.137 , Issue.2 , pp. 191-196
    • Leski, J.M.1
  • 31
    • 33244486981 scopus 로고    scopus 로고
    • Robust maximum entropy clustering algorithm with its labeling for outliers
    • Wang S.T., Chung F.L., Deng Z.H., Hu D.W., and Wu X. Robust maximum entropy clustering algorithm with its labeling for outliers. Soft Comput. 10 7 (2006) 555-563
    • (2006) Soft Comput. , vol.10 , Issue.7 , pp. 555-563
    • Wang, S.T.1    Chung, F.L.2    Deng, Z.H.3    Hu, D.W.4    Wu, X.5
  • 33
    • 14644432442 scopus 로고    scopus 로고
    • Optimality test for generalized FCM and its application to parameter selection
    • Yu J., and Yang M.S. Optimality test for generalized FCM and its application to parameter selection. IEEE Trans. Fuzzy Syst. 13 1 (2005) 164-176
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.1 , pp. 164-176
    • Yu, J.1    Yang, M.S.2
  • 35
    • 70449727598 scopus 로고    scopus 로고
    • Weighted cluster ensembles: Methods and analysis
    • Technical Report ISE-TR-07-06, December
    • C. Domeniconi, M. Al-Razgan, Weighted cluster ensembles: methods and analysis, Technical Report ISE-TR-07-06, December 2007.
    • (2007)
    • Domeniconi, C.1    Al-Razgan, M.2
  • 36
    • 33747857417 scopus 로고    scopus 로고
    • Distance-based clustering of CGH data
    • Liu J., Mohammed J., Carter J., et al. Distance-based clustering of CGH data. Bioinformatics 22 16 (2006) 1971-1978
    • (2006) Bioinformatics , vol.22 , Issue.16 , pp. 1971-1978
    • Liu, J.1    Mohammed, J.2    Carter, J.3
  • 38
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy S.L., et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415 (2002) 436-442
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.L.1
  • 39
    • 0035881732 scopus 로고    scopus 로고
    • Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer
    • Welsh J.B. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res. 61 (2001) 5974-5978
    • (2001) Cancer Res. , vol.61 , pp. 5974-5978
    • Welsh, J.B.1
  • 40
    • 0034680102 scopus 로고    scopus 로고
    • Molecular portraits of human breast tumours
    • Perou C.M., et al. Molecular portraits of human breast tumours. Nature 406 (2000) 747-752
    • (2000) Nature , vol.406 , pp. 747-752
    • Perou, C.M.1
  • 41
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • Alizadeh A.A., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403 (2000) 503-511
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.A.1
  • 42
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacharjee A., et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Nat. Acad. Sci. USA 98 (2001) 13790-13795
    • (2001) Proc. Nat. Acad. Sci. USA , vol.98 , pp. 13790-13795
    • Bhattacharjee, A.1
  • 44
    • 0346094167 scopus 로고    scopus 로고
    • Simple Gabor feature space for invariant object recognition
    • Kyrki V., Kamarainen J.K., and Kälviäinen H. Simple Gabor feature space for invariant object recognition. Pattern Recognition Lett. 25 3 (2004) 311-318
    • (2004) Pattern Recognition Lett. , vol.25 , Issue.3 , pp. 311-318
    • Kyrki, V.1    Kamarainen, J.K.2    Kälviäinen, H.3
  • 45
    • 0032131147 scopus 로고    scopus 로고
    • A fast and high quality multilevel scheme for partitioning irregular graphs
    • Karypis G., and Kumar V. A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20 1 (1998) 359-392
    • (1998) SIAM J. Sci. Comput. , vol.20 , Issue.1 , pp. 359-392
    • Karypis, G.1    Kumar, V.2
  • 46
    • 0041875229 scopus 로고    scopus 로고
    • On spectral clustering: Analysis and an algorithm
    • A.Y. Ng, M. Jordan, Y. Weiss, On spectral clustering: analysis and an algorithm, in: Proceedings of NIPS, 2001, pp. 849-856.
    • (2001) Proceedings of NIPS , pp. 849-856
    • Ng, A.Y.1    Jordan, M.2    Weiss, Y.3
  • 47
    • 54949090814 scopus 로고    scopus 로고
    • Automatic clustering using an improved differential evolution algorithm
    • Das S., Abraham A., and Konar A. Automatic clustering using an improved differential evolution algorithm. IEEE Trans. Syst., Man Cybern., Part A 38 1 (2008) 218-237
    • (2008) IEEE Trans. Syst., Man Cybern., Part A , vol.38 , Issue.1 , pp. 218-237
    • Das, S.1    Abraham, A.2    Konar, A.3
  • 49
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning with application to clustering with side-information
    • E.P. Xing, A.Y. Ng, M.I. Jordan, S.J. Russell, Distance metric learning with application to clustering with side-information, in: Proceedings of NIPS, 2003, pp. 505-512.
    • (2003) Proceedings of NIPS , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.