-
1
-
-
28444473118
-
Do we know anything about how left-right asymmetry is first established in the vertebrate embryoα
-
Tabin C. Do we know anything about how left-right asymmetry is first established in the vertebrate embryoα. J. Mol. Histol. 2005, 36:317-323.
-
(2005)
J. Mol. Histol.
, vol.36
, pp. 317-323
-
-
Tabin, C.1
-
2
-
-
84865250455
-
Left-right patterning: conserved and divergent mechanisms
-
Nakamura T., Hamada H. Left-right patterning: conserved and divergent mechanisms. Development 2012, 139:3257-3262.
-
(2012)
Development
, vol.139
, pp. 3257-3262
-
-
Nakamura, T.1
Hamada, H.2
-
3
-
-
19344367605
-
Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination
-
Okada Y., et al. Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 2005, 121:633-644.
-
(2005)
Cell
, vol.121
, pp. 633-644
-
-
Okada, Y.1
-
4
-
-
23944510234
-
De novo formation of left-right asymmetry by posterior tilt of nodal cilia
-
Nonaka S., et al. De novo formation of left-right asymmetry by posterior tilt of nodal cilia. PLoS Biol. 2005, 3:e268.
-
(2005)
PLoS Biol.
, vol.3
-
-
Nonaka, S.1
-
5
-
-
84878377681
-
Asymmetric rotational stroke in mouse node cilia during left-right determination
-
Takamatsu A., et al. Asymmetric rotational stroke in mouse node cilia during left-right determination. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 2013, 87:050701.
-
(2013)
Phys. Rev. E: Stat. Nonlin. Soft Matter Phys.
, vol.87
, pp. 050701
-
-
Takamatsu, A.1
-
6
-
-
66349129857
-
Xenopus, an ideal model system to study vertebrate left-right asymmetry
-
Blum M., et al. Xenopus, an ideal model system to study vertebrate left-right asymmetry. Dev. Dyn. 2009, 238:1215-1225.
-
(2009)
Dev. Dyn.
, vol.238
, pp. 1215-1225
-
-
Blum, M.1
-
7
-
-
34447544549
-
Analysis of Kupffer's vesicle in zebrafish embryos using a cave automated virtual environment
-
Kreiling J.A., et al. Analysis of Kupffer's vesicle in zebrafish embryos using a cave automated virtual environment. Dev. Dyn. 2007, 236:1963-1969.
-
(2007)
Dev. Dyn.
, vol.236
, pp. 1963-1969
-
-
Kreiling, J.A.1
-
8
-
-
39149144464
-
Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants
-
Sullivan-Brown J., et al. Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants. Dev. Biol. 2008, 314:261-275.
-
(2008)
Dev. Biol.
, vol.314
, pp. 261-275
-
-
Sullivan-Brown, J.1
-
9
-
-
65549153317
-
Rotation of organizer tissue contributes to left-right asymmetry
-
Cui C., et al. Rotation of organizer tissue contributes to left-right asymmetry. Anat. Rec. (Hoboken) 2009, 292:557-561.
-
(2009)
Anat. Rec. (Hoboken)
, vol.292
, pp. 557-561
-
-
Cui, C.1
-
10
-
-
66149094719
-
Cell movements at Hensen's node establish left/right asymmetric gene expression in the chick
-
Gros J., et al. Cell movements at Hensen's node establish left/right asymmetric gene expression in the chick. Science 2009, 324:941-944.
-
(2009)
Science
, vol.324
, pp. 941-944
-
-
Gros, J.1
-
11
-
-
84858071340
-
The formation and positioning of cilia in Ciona intestinalis embryos in relation to the generation and evolution of chordate left-right asymmetry
-
Thompson H., et al. The formation and positioning of cilia in Ciona intestinalis embryos in relation to the generation and evolution of chordate left-right asymmetry. Dev. Biol. 2012, 364:214-223.
-
(2012)
Dev. Biol.
, vol.364
, pp. 214-223
-
-
Thompson, H.1
-
12
-
-
75949121525
-
Planar polarization of node cells determines the rotational axis of node cilia
-
Hashimoto M., et al. Planar polarization of node cells determines the rotational axis of node cilia. Nat. Cell Biol. 2010, 12:170-176.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 170-176
-
-
Hashimoto, M.1
-
13
-
-
77954661192
-
Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning
-
Song H., et al. Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature 2010, 466:378-382.
-
(2010)
Nature
, vol.466
, pp. 378-382
-
-
Song, H.1
-
14
-
-
77749302091
-
Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis
-
Antic D., et al. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis. PLoS ONE 2010, 5:e8999.
-
(2010)
PLoS ONE
, vol.5
-
-
Antic, D.1
-
15
-
-
84874542709
-
Cofilin and Vangl2 cooperate in the initiation of planar cell polarity in the mouse embryo
-
Mahaffey J.P., et al. Cofilin and Vangl2 cooperate in the initiation of planar cell polarity in the mouse embryo. Development 2013, 140:1262-1271.
-
(2013)
Development
, vol.140
, pp. 1262-1271
-
-
Mahaffey, J.P.1
-
16
-
-
69049097145
-
Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow
-
Maisonneuve C., et al. Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. Development 2009, 136:3019-3030.
-
(2009)
Development
, vol.136
, pp. 3019-3030
-
-
Maisonneuve, C.1
-
17
-
-
77950502479
-
The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity
-
Tran U., et al. The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 2010, 137:1107-1116.
-
(2010)
Development
, vol.137
, pp. 1107-1116
-
-
Tran, U.1
-
18
-
-
34247555530
-
A positive feedback mechanism governs the polarity and motion of motile cilia
-
Mitchell B., et al. A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 2007, 447:97-101.
-
(2007)
Nature
, vol.447
, pp. 97-101
-
-
Mitchell, B.1
-
19
-
-
0033212985
-
Abnormal nodal flow precedes situs inversus in iv and inv mice
-
Okada Y., et al. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol. Cell 1999, 4:459-468.
-
(1999)
Mol. Cell
, vol.4
, pp. 459-468
-
-
Okada, Y.1
-
20
-
-
63449123569
-
Sfrp controls apicobasal polarity and oriented cell division in developing gut epithelium
-
Matsuyama M., et al. Sfrp controls apicobasal polarity and oriented cell division in developing gut epithelium. PLoS Genet. 2009, 5:e1000427.
-
(2009)
PLoS Genet.
, vol.5
-
-
Matsuyama, M.1
-
21
-
-
0032428685
-
Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein
-
Nonaka S., et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998, 95:829-837.
-
(1998)
Cell
, vol.95
, pp. 829-837
-
-
Nonaka, S.1
-
22
-
-
0033601735
-
Characterization of a Chlamydomonas insertional mutant that disrupts flagellar central pair microtubule-associated structures
-
Mitchell D.R., Sale W.S. Characterization of a Chlamydomonas insertional mutant that disrupts flagellar central pair microtubule-associated structures. J. Cell Biol. 1999, 144:293-304.
-
(1999)
J. Cell Biol.
, vol.144
, pp. 293-304
-
-
Mitchell, D.R.1
Sale, W.S.2
-
23
-
-
0033841837
-
Vigorous beating of Chlamydomonas axonemes lacking central pair/radial spoke structures in the presence of salts and organic compounds
-
Yagi T., Kamiya R. Vigorous beating of Chlamydomonas axonemes lacking central pair/radial spoke structures in the presence of salts and organic compounds. Cell Motil. Cytoskeleton 2000, 46:190-199.
-
(2000)
Cell Motil. Cytoskeleton
, vol.46
, pp. 190-199
-
-
Yagi, T.1
Kamiya, R.2
-
24
-
-
84867244938
-
Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry
-
Olbrich H., et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am. J. Hum. Genet. 2012, 91:672-684.
-
(2012)
Am. J. Hum. Genet.
, vol.91
, pp. 672-684
-
-
Olbrich, H.1
-
25
-
-
0019781934
-
Cilia and flagella of eukaryotes
-
Gibbons I.R. Cilia and flagella of eukaryotes. J. Cell Biol. 1981, 91:107s-124s.
-
(1981)
J. Cell Biol.
, vol.91
-
-
Gibbons, I.R.1
-
26
-
-
57349137660
-
Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins
-
Omran H., et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 2008, 456:611-616.
-
(2008)
Nature
, vol.456
, pp. 611-616
-
-
Omran, H.1
-
27
-
-
84859436123
-
Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia
-
S381-382
-
Mitchison H.M., et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat. Genet. 2012, 44:381-389. S381-382.
-
(2012)
Nat. Genet.
, vol.44
, pp. 381-389
-
-
Mitchison, H.M.1
-
28
-
-
71449084986
-
Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia
-
Duquesnoy P., et al. Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2009, 85:890-896.
-
(2009)
Am. J. Hum. Genet.
, vol.85
, pp. 890-896
-
-
Duquesnoy, P.1
-
29
-
-
77954741196
-
Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins
-
Yamamoto R., et al. Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins. J. Cell Biol. 2010, 190:65-71.
-
(2010)
J. Cell Biol.
, vol.190
, pp. 65-71
-
-
Yamamoto, R.1
-
30
-
-
84856321938
-
Ciliary motility: the components and cytoplasmic preassembly mechanisms of the axonemal dyneins
-
Kobayashi D., Takeda H. Ciliary motility: the components and cytoplasmic preassembly mechanisms of the axonemal dyneins. Differentiation 2012, 83:S23-S29.
-
(2012)
Differentiation
, vol.83
-
-
Kobayashi, D.1
Takeda, H.2
-
31
-
-
0036479029
-
Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry
-
Olbrich H., et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat. Genet. 2002, 30:143-144.
-
(2002)
Nat. Genet.
, vol.30
, pp. 143-144
-
-
Olbrich, H.1
-
32
-
-
55249083702
-
DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm
-
Loges N.T., et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am. J. Hum. Genet. 2008, 83:547-558.
-
(2008)
Am. J. Hum. Genet.
, vol.83
, pp. 547-558
-
-
Loges, N.T.1
-
33
-
-
0033365058
-
Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia
-
Pennarun G., et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 1999, 65:1508-1519.
-
(1999)
Am. J. Hum. Genet.
, vol.65
, pp. 1508-1519
-
-
Pennarun, G.1
-
34
-
-
78651260210
-
CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs
-
Merveille A.C., et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat. Genet. 2011, 43:72-78.
-
(2011)
Nat. Genet.
, vol.43
, pp. 72-78
-
-
Merveille, A.C.1
-
35
-
-
78651254549
-
The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation
-
Becker-Heck A., et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat. Genet. 2011, 43:79-84.
-
(2011)
Nat. Genet.
, vol.43
, pp. 79-84
-
-
Becker-Heck, A.1
-
36
-
-
0030656618
-
Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice
-
Supp D.M., et al. Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 1997, 389:963-966.
-
(1997)
Nature
, vol.389
, pp. 963-966
-
-
Supp, D.M.1
-
37
-
-
0029993646
-
Relationship between asymmetric nodal expression and the direction of embryonic turning
-
Collignon J., et al. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 1996, 381:155-158.
-
(1996)
Nature
, vol.381
, pp. 155-158
-
-
Collignon, J.1
-
38
-
-
0029913091
-
Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus
-
Lowe L.A., et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 1996, 381:158-161.
-
(1996)
Nature
, vol.381
, pp. 158-161
-
-
Lowe, L.A.1
-
39
-
-
0038784537
-
Two populations of node monocilia initiate left-right asymmetry in the mouse
-
McGrath J., et al. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 2003, 114:61-73.
-
(2003)
Cell
, vol.114
, pp. 61-73
-
-
McGrath, J.1
-
40
-
-
0037229694
-
A two-cilia model for vertebrate left-right axis specification
-
Tabin C.J., Vogan K.J. A two-cilia model for vertebrate left-right axis specification. Genes Dev. 2003, 17:1-6.
-
(2003)
Genes Dev.
, vol.17
, pp. 1-6
-
-
Tabin, C.J.1
Vogan, K.J.2
-
41
-
-
84867336373
-
Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2
-
Yoshiba S., et al. Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 2012, 338:226-231.
-
(2012)
Science
, vol.338
, pp. 226-231
-
-
Yoshiba, S.1
-
42
-
-
0033577894
-
-/- mice analysis
-
-/- mice analysis. J. Cell Biol. 1999, 145:825-836.
-
(1999)
J. Cell Biol.
, vol.145
, pp. 825-836
-
-
Takeda, S.1
-
43
-
-
79955619821
-
Mechanoreception in motile flagella of Chlamydomonas
-
Fujiu K., et al. Mechanoreception in motile flagella of Chlamydomonas. Nat. Cell Biol. 2011, 13:630-632.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 630-632
-
-
Fujiu, K.1
-
44
-
-
79955141781
-
Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left-right axis
-
Kamura K., et al. Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left-right axis. Development 2011, 138:1121-1129.
-
(2011)
Development
, vol.138
, pp. 1121-1129
-
-
Kamura, K.1
-
45
-
-
0037018850
-
The ion channel polycystin-2 is required for left-right axis determination in mice
-
Pennekamp P., et al. The ion channel polycystin-2 is required for left-right axis determination in mice. Curr. Biol. 2002, 12:938-943.
-
(2002)
Curr. Biol.
, vol.12
, pp. 938-943
-
-
Pennekamp, P.1
-
46
-
-
84856729595
-
Two rotating cilia in the node cavity are sufficient to break left-right symmetry in the mouse embryo
-
Shinohara K., et al. Two rotating cilia in the node cavity are sufficient to break left-right symmetry in the mouse embryo. Nat. Commun. 2012, 3:622.
-
(2012)
Nat. Commun.
, vol.3
, pp. 622
-
-
Shinohara, K.1
-
48
-
-
79955162632
-
Pkd1l1 establishes left-right asymmetry and physically interacts with Pkd2
-
Field S., et al. Pkd1l1 establishes left-right asymmetry and physically interacts with Pkd2. Development 2011, 138:1131-1142.
-
(2011)
Development
, vol.138
, pp. 1131-1142
-
-
Field, S.1
-
49
-
-
84875265552
-
Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left-right axis formation
-
Takao D., et al. Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left-right axis formation. Dev. Biol. 2013, 376:23-30.
-
(2013)
Dev. Biol.
, vol.376
, pp. 23-30
-
-
Takao, D.1
-
50
-
-
77951205996
-
The nodal inhibitor coco is a critical target of leftward flow in Xenopus
-
Schweickert A., et al. The nodal inhibitor coco is a critical target of leftward flow in Xenopus. Curr. Biol. 2010, 20:738-743.
-
(2010)
Curr. Biol.
, vol.20
, pp. 738-743
-
-
Schweickert, A.1
-
51
-
-
4644289915
-
The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis
-
Marques S., et al. The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis. Genes Dev. 2004, 18:2342-2347.
-
(2004)
Genes Dev.
, vol.18
, pp. 2342-2347
-
-
Marques, S.1
-
52
-
-
79955007799
-
Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos
-
Kawasumi A., et al. Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos. Dev. Biol. 2011, 353:321-330.
-
(2011)
Dev. Biol.
, vol.353
, pp. 321-330
-
-
Kawasumi, A.1
-
53
-
-
84871747038
-
Fluid flow and interlinked feedback loops establish left-right asymmetric decay of Cerl2 mRNA
-
Nakamura T., et al. Fluid flow and interlinked feedback loops establish left-right asymmetric decay of Cerl2 mRNA. Nat. Commun. 2012, 3:1322.
-
(2012)
Nat. Commun.
, vol.3
, pp. 1322
-
-
Nakamura, T.1
-
54
-
-
84875470948
-
The dynamic right-to-left translocation of Cerl2 is involved in the regulation and termination of Nodal activity in the mouse node
-
Inacio J.M., et al. The dynamic right-to-left translocation of Cerl2 is involved in the regulation and termination of Nodal activity in the mouse node. PLoS ONE 2013, 8:e60406.
-
(2013)
PLoS ONE
, vol.8
-
-
Inacio, J.M.1
-
55
-
-
0037106188
-
Nodal activity in the node governs left-right asymmetry
-
Brennan J., et al. Nodal activity in the node governs left-right asymmetry. Genes Dev. 2002, 16:2339-2344.
-
(2002)
Genes Dev.
, vol.16
, pp. 2339-2344
-
-
Brennan, J.1
-
56
-
-
0037377604
-
Left-right patterning of the mouse lateral plate requires nodal produced in the node
-
Saijoh Y., et al. Left-right patterning of the mouse lateral plate requires nodal produced in the node. Dev. Biol. 2003, 256:160-172.
-
(2003)
Dev. Biol.
, vol.256
, pp. 160-172
-
-
Saijoh, Y.1
-
57
-
-
0033564874
-
Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements
-
Norris D.P., Robertson E.J. Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements. Genes Dev. 1999, 13:1575-1588.
-
(1999)
Genes Dev.
, vol.13
, pp. 1575-1588
-
-
Norris, D.P.1
Robertson, E.J.2
-
58
-
-
0033969935
-
Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2
-
Saijoh Y., et al. Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Mol. Cell 2000, 5:35-47.
-
(2000)
Mol. Cell
, vol.5
, pp. 35-47
-
-
Saijoh, Y.1
-
59
-
-
0033564195
-
Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer
-
Adachi H., et al. Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer. Genes Dev. 1999, 13:1589-1600.
-
(1999)
Genes Dev.
, vol.13
, pp. 1589-1600
-
-
Adachi, H.1
-
60
-
-
16244407435
-
Two nodal-responsive enhancers control left-right asymmetric expression of Nodal
-
Saijoh Y., et al. Two nodal-responsive enhancers control left-right asymmetric expression of Nodal. Dev. Dyn. 2005, 232:1031-1036.
-
(2005)
Dev. Dyn.
, vol.232
, pp. 1031-1036
-
-
Saijoh, Y.1
-
61
-
-
5444220114
-
Asymmetric Nodal expression in the mouse is governed by the combinatorial activities of two distinct regulatory elements
-
Vincent S.D., et al. Asymmetric Nodal expression in the mouse is governed by the combinatorial activities of two distinct regulatory elements. Mech. Dev. 2004, 121:1403-1415.
-
(2004)
Mech. Dev.
, vol.121
, pp. 1403-1415
-
-
Vincent, S.D.1
-
62
-
-
0012547516
-
Nodal signaling induces the midline barrier by activating Nodal expression in the lateral plate
-
Yamamoto M., et al. Nodal signaling induces the midline barrier by activating Nodal expression in the lateral plate. Development 2003, 130:1795-1804.
-
(2003)
Development
, vol.130
, pp. 1795-1804
-
-
Yamamoto, M.1
-
63
-
-
0034050737
-
Regulation of left-right patterning in mice by growth/differentiation factor-1
-
Rankin C.T., et al. Regulation of left-right patterning in mice by growth/differentiation factor-1. Nat. Genet. 2000, 24:262-265.
-
(2000)
Nat. Genet.
, vol.24
, pp. 262-265
-
-
Rankin, C.T.1
-
64
-
-
37249093137
-
Long-range action of Nodal requires interaction with GDF1
-
Tanaka C., et al. Long-range action of Nodal requires interaction with GDF1. Genes Dev. 2007, 21:3272-3282.
-
(2007)
Genes Dev.
, vol.21
, pp. 3272-3282
-
-
Tanaka, C.1
-
65
-
-
36549035731
-
Sulfated glycosaminoglycans are necessary for Nodal signal transmission from the node to the left lateral plate in the mouse embryo
-
Oki S., et al. Sulfated glycosaminoglycans are necessary for Nodal signal transmission from the node to the left lateral plate in the mouse embryo. Development 2007, 134:3893-3904.
-
(2007)
Development
, vol.134
, pp. 3893-3904
-
-
Oki, S.1
-
66
-
-
78751505793
-
Rapid differential transport of Nodal and Lefty on sulfated proteoglycan-rich extracellular matrix regulates left-right asymmetry in Xenopus
-
Marjoram L., Wright C. Rapid differential transport of Nodal and Lefty on sulfated proteoglycan-rich extracellular matrix regulates left-right asymmetry in Xenopus. Development 2011, 138:475-485.
-
(2011)
Development
, vol.138
, pp. 475-485
-
-
Marjoram, L.1
Wright, C.2
-
67
-
-
84861990952
-
Gut endoderm is involved in the transfer of left-right asymmetry from the node to the lateral plate mesoderm in the mouse embryo
-
Saund R.S., et al. Gut endoderm is involved in the transfer of left-right asymmetry from the node to the lateral plate mesoderm in the mouse embryo. Development 2012, 139:2426-2435.
-
(2012)
Development
, vol.139
, pp. 2426-2435
-
-
Saund, R.S.1
-
68
-
-
84858980401
-
Role of the gut endoderm in relaying left-right patterning in mice
-
Viotti M., et al. Role of the gut endoderm in relaying left-right patterning in mice. PLoS Biol. 2012, 10:e1001276.
-
(2012)
PLoS Biol.
, vol.10
-
-
Viotti, M.1
-
69
-
-
84964865489
-
Connexin26-mediated transfer of laterality cues in Xenopus
-
Beyer T., et al. Connexin26-mediated transfer of laterality cues in Xenopus. Biol. Open 2012, 1:473-481.
-
(2012)
Biol. Open
, vol.1
, pp. 473-481
-
-
Beyer, T.1
-
70
-
-
84870910751
-
Cilia, calcium and the basis of left-right asymmetry
-
Norris D.P. Cilia, calcium and the basis of left-right asymmetry. BMC Biol. 2012, 10:102.
-
(2012)
BMC Biol.
, vol.10
, pp. 102
-
-
Norris, D.P.1
-
71
-
-
57149127744
-
The development and evolution of left-right asymmetry in invertebrates: lessons from Drosophila and snails
-
Okumura T., et al. The development and evolution of left-right asymmetry in invertebrates: lessons from Drosophila and snails. Dev. Dyn. 2008, 237:3497-3515.
-
(2008)
Dev. Dyn.
, vol.237
, pp. 3497-3515
-
-
Okumura, T.1
-
72
-
-
33847006616
-
Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo
-
Blum M., et al. Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo. Differentiation 2007, 75:133-146.
-
(2007)
Differentiation
, vol.75
, pp. 133-146
-
-
Blum, M.1
-
73
-
-
33947525850
-
Genetic defects in ciliary structure and function
-
Zariwala M.A., et al. Genetic defects in ciliary structure and function. Annu. Rev. Physiol. 2007, 69:423-450.
-
(2007)
Annu. Rev. Physiol.
, vol.69
, pp. 423-450
-
-
Zariwala, M.A.1
-
74
-
-
35448961665
-
When cilia go bad: cilia defects and ciliopathies
-
Fliegauf M., et al. When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 2007, 8:880-893.
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 880-893
-
-
Fliegauf, M.1
|