메뉴 건너뛰기




Volumn 30, Issue 1, 2014, Pages 10-17

Roles of cilia, fluid flow, and Ca2+ signaling in breaking of left-right symmetry

Author keywords

Cilia; Fluid flow; Left right asymmetry

Indexed keywords

CERL2 PROTEIN; GROWTH DIFFERENTIATION FACTOR 1; MESSENGER RNA; PROTEIN; PROTEIN NODAL; TRANSCRIPTION FACTOR SOX17; UNCLASSIFIED DRUG; WNT3 PROTEIN;

EID: 84891160941     PISSN: 01689525     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tig.2013.09.001     Document Type: Review
Times cited : (102)

References (74)
  • 1
    • 28444473118 scopus 로고    scopus 로고
    • Do we know anything about how left-right asymmetry is first established in the vertebrate embryoα
    • Tabin C. Do we know anything about how left-right asymmetry is first established in the vertebrate embryoα. J. Mol. Histol. 2005, 36:317-323.
    • (2005) J. Mol. Histol. , vol.36 , pp. 317-323
    • Tabin, C.1
  • 2
    • 84865250455 scopus 로고    scopus 로고
    • Left-right patterning: conserved and divergent mechanisms
    • Nakamura T., Hamada H. Left-right patterning: conserved and divergent mechanisms. Development 2012, 139:3257-3262.
    • (2012) Development , vol.139 , pp. 3257-3262
    • Nakamura, T.1    Hamada, H.2
  • 3
    • 19344367605 scopus 로고    scopus 로고
    • Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination
    • Okada Y., et al. Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 2005, 121:633-644.
    • (2005) Cell , vol.121 , pp. 633-644
    • Okada, Y.1
  • 4
    • 23944510234 scopus 로고    scopus 로고
    • De novo formation of left-right asymmetry by posterior tilt of nodal cilia
    • Nonaka S., et al. De novo formation of left-right asymmetry by posterior tilt of nodal cilia. PLoS Biol. 2005, 3:e268.
    • (2005) PLoS Biol. , vol.3
    • Nonaka, S.1
  • 5
    • 84878377681 scopus 로고    scopus 로고
    • Asymmetric rotational stroke in mouse node cilia during left-right determination
    • Takamatsu A., et al. Asymmetric rotational stroke in mouse node cilia during left-right determination. Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. 2013, 87:050701.
    • (2013) Phys. Rev. E: Stat. Nonlin. Soft Matter Phys. , vol.87 , pp. 050701
    • Takamatsu, A.1
  • 6
    • 66349129857 scopus 로고    scopus 로고
    • Xenopus, an ideal model system to study vertebrate left-right asymmetry
    • Blum M., et al. Xenopus, an ideal model system to study vertebrate left-right asymmetry. Dev. Dyn. 2009, 238:1215-1225.
    • (2009) Dev. Dyn. , vol.238 , pp. 1215-1225
    • Blum, M.1
  • 7
    • 34447544549 scopus 로고    scopus 로고
    • Analysis of Kupffer's vesicle in zebrafish embryos using a cave automated virtual environment
    • Kreiling J.A., et al. Analysis of Kupffer's vesicle in zebrafish embryos using a cave automated virtual environment. Dev. Dyn. 2007, 236:1963-1969.
    • (2007) Dev. Dyn. , vol.236 , pp. 1963-1969
    • Kreiling, J.A.1
  • 8
    • 39149144464 scopus 로고    scopus 로고
    • Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants
    • Sullivan-Brown J., et al. Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants. Dev. Biol. 2008, 314:261-275.
    • (2008) Dev. Biol. , vol.314 , pp. 261-275
    • Sullivan-Brown, J.1
  • 9
    • 65549153317 scopus 로고    scopus 로고
    • Rotation of organizer tissue contributes to left-right asymmetry
    • Cui C., et al. Rotation of organizer tissue contributes to left-right asymmetry. Anat. Rec. (Hoboken) 2009, 292:557-561.
    • (2009) Anat. Rec. (Hoboken) , vol.292 , pp. 557-561
    • Cui, C.1
  • 10
    • 66149094719 scopus 로고    scopus 로고
    • Cell movements at Hensen's node establish left/right asymmetric gene expression in the chick
    • Gros J., et al. Cell movements at Hensen's node establish left/right asymmetric gene expression in the chick. Science 2009, 324:941-944.
    • (2009) Science , vol.324 , pp. 941-944
    • Gros, J.1
  • 11
    • 84858071340 scopus 로고    scopus 로고
    • The formation and positioning of cilia in Ciona intestinalis embryos in relation to the generation and evolution of chordate left-right asymmetry
    • Thompson H., et al. The formation and positioning of cilia in Ciona intestinalis embryos in relation to the generation and evolution of chordate left-right asymmetry. Dev. Biol. 2012, 364:214-223.
    • (2012) Dev. Biol. , vol.364 , pp. 214-223
    • Thompson, H.1
  • 12
    • 75949121525 scopus 로고    scopus 로고
    • Planar polarization of node cells determines the rotational axis of node cilia
    • Hashimoto M., et al. Planar polarization of node cells determines the rotational axis of node cilia. Nat. Cell Biol. 2010, 12:170-176.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 170-176
    • Hashimoto, M.1
  • 13
    • 77954661192 scopus 로고    scopus 로고
    • Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning
    • Song H., et al. Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature 2010, 466:378-382.
    • (2010) Nature , vol.466 , pp. 378-382
    • Song, H.1
  • 14
    • 77749302091 scopus 로고    scopus 로고
    • Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis
    • Antic D., et al. Planar cell polarity enables posterior localization of nodal cilia and left-right axis determination during mouse and Xenopus embryogenesis. PLoS ONE 2010, 5:e8999.
    • (2010) PLoS ONE , vol.5
    • Antic, D.1
  • 15
    • 84874542709 scopus 로고    scopus 로고
    • Cofilin and Vangl2 cooperate in the initiation of planar cell polarity in the mouse embryo
    • Mahaffey J.P., et al. Cofilin and Vangl2 cooperate in the initiation of planar cell polarity in the mouse embryo. Development 2013, 140:1262-1271.
    • (2013) Development , vol.140 , pp. 1262-1271
    • Mahaffey, J.P.1
  • 16
    • 69049097145 scopus 로고    scopus 로고
    • Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow
    • Maisonneuve C., et al. Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. Development 2009, 136:3019-3030.
    • (2009) Development , vol.136 , pp. 3019-3030
    • Maisonneuve, C.1
  • 17
    • 77950502479 scopus 로고    scopus 로고
    • The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity
    • Tran U., et al. The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 2010, 137:1107-1116.
    • (2010) Development , vol.137 , pp. 1107-1116
    • Tran, U.1
  • 18
    • 34247555530 scopus 로고    scopus 로고
    • A positive feedback mechanism governs the polarity and motion of motile cilia
    • Mitchell B., et al. A positive feedback mechanism governs the polarity and motion of motile cilia. Nature 2007, 447:97-101.
    • (2007) Nature , vol.447 , pp. 97-101
    • Mitchell, B.1
  • 19
    • 0033212985 scopus 로고    scopus 로고
    • Abnormal nodal flow precedes situs inversus in iv and inv mice
    • Okada Y., et al. Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol. Cell 1999, 4:459-468.
    • (1999) Mol. Cell , vol.4 , pp. 459-468
    • Okada, Y.1
  • 20
    • 63449123569 scopus 로고    scopus 로고
    • Sfrp controls apicobasal polarity and oriented cell division in developing gut epithelium
    • Matsuyama M., et al. Sfrp controls apicobasal polarity and oriented cell division in developing gut epithelium. PLoS Genet. 2009, 5:e1000427.
    • (2009) PLoS Genet. , vol.5
    • Matsuyama, M.1
  • 21
    • 0032428685 scopus 로고    scopus 로고
    • Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein
    • Nonaka S., et al. Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 1998, 95:829-837.
    • (1998) Cell , vol.95 , pp. 829-837
    • Nonaka, S.1
  • 22
    • 0033601735 scopus 로고    scopus 로고
    • Characterization of a Chlamydomonas insertional mutant that disrupts flagellar central pair microtubule-associated structures
    • Mitchell D.R., Sale W.S. Characterization of a Chlamydomonas insertional mutant that disrupts flagellar central pair microtubule-associated structures. J. Cell Biol. 1999, 144:293-304.
    • (1999) J. Cell Biol. , vol.144 , pp. 293-304
    • Mitchell, D.R.1    Sale, W.S.2
  • 23
    • 0033841837 scopus 로고    scopus 로고
    • Vigorous beating of Chlamydomonas axonemes lacking central pair/radial spoke structures in the presence of salts and organic compounds
    • Yagi T., Kamiya R. Vigorous beating of Chlamydomonas axonemes lacking central pair/radial spoke structures in the presence of salts and organic compounds. Cell Motil. Cytoskeleton 2000, 46:190-199.
    • (2000) Cell Motil. Cytoskeleton , vol.46 , pp. 190-199
    • Yagi, T.1    Kamiya, R.2
  • 24
    • 84867244938 scopus 로고    scopus 로고
    • Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry
    • Olbrich H., et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am. J. Hum. Genet. 2012, 91:672-684.
    • (2012) Am. J. Hum. Genet. , vol.91 , pp. 672-684
    • Olbrich, H.1
  • 25
    • 0019781934 scopus 로고
    • Cilia and flagella of eukaryotes
    • Gibbons I.R. Cilia and flagella of eukaryotes. J. Cell Biol. 1981, 91:107s-124s.
    • (1981) J. Cell Biol. , vol.91
    • Gibbons, I.R.1
  • 26
    • 57349137660 scopus 로고    scopus 로고
    • Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins
    • Omran H., et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature 2008, 456:611-616.
    • (2008) Nature , vol.456 , pp. 611-616
    • Omran, H.1
  • 27
    • 84859436123 scopus 로고    scopus 로고
    • Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia
    • S381-382
    • Mitchison H.M., et al. Mutations in axonemal dynein assembly factor DNAAF3 cause primary ciliary dyskinesia. Nat. Genet. 2012, 44:381-389. S381-382.
    • (2012) Nat. Genet. , vol.44 , pp. 381-389
    • Mitchison, H.M.1
  • 28
    • 71449084986 scopus 로고    scopus 로고
    • Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia
    • Duquesnoy P., et al. Loss-of-function mutations in the human ortholog of Chlamydomonas reinhardtii ODA7 disrupt dynein arm assembly and cause primary ciliary dyskinesia. Am. J. Hum. Genet. 2009, 85:890-896.
    • (2009) Am. J. Hum. Genet. , vol.85 , pp. 890-896
    • Duquesnoy, P.1
  • 29
    • 77954741196 scopus 로고    scopus 로고
    • Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins
    • Yamamoto R., et al. Discrete PIH proteins function in the cytoplasmic preassembly of different subsets of axonemal dyneins. J. Cell Biol. 2010, 190:65-71.
    • (2010) J. Cell Biol. , vol.190 , pp. 65-71
    • Yamamoto, R.1
  • 30
    • 84856321938 scopus 로고    scopus 로고
    • Ciliary motility: the components and cytoplasmic preassembly mechanisms of the axonemal dyneins
    • Kobayashi D., Takeda H. Ciliary motility: the components and cytoplasmic preassembly mechanisms of the axonemal dyneins. Differentiation 2012, 83:S23-S29.
    • (2012) Differentiation , vol.83
    • Kobayashi, D.1    Takeda, H.2
  • 31
    • 0036479029 scopus 로고    scopus 로고
    • Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry
    • Olbrich H., et al. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Nat. Genet. 2002, 30:143-144.
    • (2002) Nat. Genet. , vol.30 , pp. 143-144
    • Olbrich, H.1
  • 32
    • 55249083702 scopus 로고    scopus 로고
    • DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm
    • Loges N.T., et al. DNAI2 mutations cause primary ciliary dyskinesia with defects in the outer dynein arm. Am. J. Hum. Genet. 2008, 83:547-558.
    • (2008) Am. J. Hum. Genet. , vol.83 , pp. 547-558
    • Loges, N.T.1
  • 33
    • 0033365058 scopus 로고    scopus 로고
    • Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia
    • Pennarun G., et al. Loss-of-function mutations in a human gene related to Chlamydomonas reinhardtii dynein IC78 result in primary ciliary dyskinesia. Am. J. Hum. Genet. 1999, 65:1508-1519.
    • (1999) Am. J. Hum. Genet. , vol.65 , pp. 1508-1519
    • Pennarun, G.1
  • 34
    • 78651260210 scopus 로고    scopus 로고
    • CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs
    • Merveille A.C., et al. CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs. Nat. Genet. 2011, 43:72-78.
    • (2011) Nat. Genet. , vol.43 , pp. 72-78
    • Merveille, A.C.1
  • 35
    • 78651254549 scopus 로고    scopus 로고
    • The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation
    • Becker-Heck A., et al. The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat. Genet. 2011, 43:79-84.
    • (2011) Nat. Genet. , vol.43 , pp. 79-84
    • Becker-Heck, A.1
  • 36
    • 0030656618 scopus 로고    scopus 로고
    • Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice
    • Supp D.M., et al. Mutation of an axonemal dynein affects left-right asymmetry in inversus viscerum mice. Nature 1997, 389:963-966.
    • (1997) Nature , vol.389 , pp. 963-966
    • Supp, D.M.1
  • 37
    • 0029993646 scopus 로고    scopus 로고
    • Relationship between asymmetric nodal expression and the direction of embryonic turning
    • Collignon J., et al. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 1996, 381:155-158.
    • (1996) Nature , vol.381 , pp. 155-158
    • Collignon, J.1
  • 38
    • 0029913091 scopus 로고    scopus 로고
    • Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus
    • Lowe L.A., et al. Conserved left-right asymmetry of nodal expression and alterations in murine situs inversus. Nature 1996, 381:158-161.
    • (1996) Nature , vol.381 , pp. 158-161
    • Lowe, L.A.1
  • 39
    • 0038784537 scopus 로고    scopus 로고
    • Two populations of node monocilia initiate left-right asymmetry in the mouse
    • McGrath J., et al. Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 2003, 114:61-73.
    • (2003) Cell , vol.114 , pp. 61-73
    • McGrath, J.1
  • 40
    • 0037229694 scopus 로고    scopus 로고
    • A two-cilia model for vertebrate left-right axis specification
    • Tabin C.J., Vogan K.J. A two-cilia model for vertebrate left-right axis specification. Genes Dev. 2003, 17:1-6.
    • (2003) Genes Dev. , vol.17 , pp. 1-6
    • Tabin, C.J.1    Vogan, K.J.2
  • 41
    • 84867336373 scopus 로고    scopus 로고
    • Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2
    • Yoshiba S., et al. Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 2012, 338:226-231.
    • (2012) Science , vol.338 , pp. 226-231
    • Yoshiba, S.1
  • 42
    • 0033577894 scopus 로고    scopus 로고
    • -/- mice analysis
    • -/- mice analysis. J. Cell Biol. 1999, 145:825-836.
    • (1999) J. Cell Biol. , vol.145 , pp. 825-836
    • Takeda, S.1
  • 43
    • 79955619821 scopus 로고    scopus 로고
    • Mechanoreception in motile flagella of Chlamydomonas
    • Fujiu K., et al. Mechanoreception in motile flagella of Chlamydomonas. Nat. Cell Biol. 2011, 13:630-632.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 630-632
    • Fujiu, K.1
  • 44
    • 79955141781 scopus 로고    scopus 로고
    • Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left-right axis
    • Kamura K., et al. Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left-right axis. Development 2011, 138:1121-1129.
    • (2011) Development , vol.138 , pp. 1121-1129
    • Kamura, K.1
  • 45
    • 0037018850 scopus 로고    scopus 로고
    • The ion channel polycystin-2 is required for left-right axis determination in mice
    • Pennekamp P., et al. The ion channel polycystin-2 is required for left-right axis determination in mice. Curr. Biol. 2002, 12:938-943.
    • (2002) Curr. Biol. , vol.12 , pp. 938-943
    • Pennekamp, P.1
  • 46
    • 84856729595 scopus 로고    scopus 로고
    • Two rotating cilia in the node cavity are sufficient to break left-right symmetry in the mouse embryo
    • Shinohara K., et al. Two rotating cilia in the node cavity are sufficient to break left-right symmetry in the mouse embryo. Nat. Commun. 2012, 3:622.
    • (2012) Nat. Commun. , vol.3 , pp. 622
    • Shinohara, K.1
  • 48
    • 79955162632 scopus 로고    scopus 로고
    • Pkd1l1 establishes left-right asymmetry and physically interacts with Pkd2
    • Field S., et al. Pkd1l1 establishes left-right asymmetry and physically interacts with Pkd2. Development 2011, 138:1131-1142.
    • (2011) Development , vol.138 , pp. 1131-1142
    • Field, S.1
  • 49
    • 84875265552 scopus 로고    scopus 로고
    • Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left-right axis formation
    • Takao D., et al. Asymmetric distribution of dynamic calcium signals in the node of mouse embryo during left-right axis formation. Dev. Biol. 2013, 376:23-30.
    • (2013) Dev. Biol. , vol.376 , pp. 23-30
    • Takao, D.1
  • 50
    • 77951205996 scopus 로고    scopus 로고
    • The nodal inhibitor coco is a critical target of leftward flow in Xenopus
    • Schweickert A., et al. The nodal inhibitor coco is a critical target of leftward flow in Xenopus. Curr. Biol. 2010, 20:738-743.
    • (2010) Curr. Biol. , vol.20 , pp. 738-743
    • Schweickert, A.1
  • 51
    • 4644289915 scopus 로고    scopus 로고
    • The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis
    • Marques S., et al. The activity of the Nodal antagonist Cerl-2 in the mouse node is required for correct L/R body axis. Genes Dev. 2004, 18:2342-2347.
    • (2004) Genes Dev. , vol.18 , pp. 2342-2347
    • Marques, S.1
  • 52
    • 79955007799 scopus 로고    scopus 로고
    • Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos
    • Kawasumi A., et al. Left-right asymmetry in the level of active Nodal protein produced in the node is translated into left-right asymmetry in the lateral plate of mouse embryos. Dev. Biol. 2011, 353:321-330.
    • (2011) Dev. Biol. , vol.353 , pp. 321-330
    • Kawasumi, A.1
  • 53
    • 84871747038 scopus 로고    scopus 로고
    • Fluid flow and interlinked feedback loops establish left-right asymmetric decay of Cerl2 mRNA
    • Nakamura T., et al. Fluid flow and interlinked feedback loops establish left-right asymmetric decay of Cerl2 mRNA. Nat. Commun. 2012, 3:1322.
    • (2012) Nat. Commun. , vol.3 , pp. 1322
    • Nakamura, T.1
  • 54
    • 84875470948 scopus 로고    scopus 로고
    • The dynamic right-to-left translocation of Cerl2 is involved in the regulation and termination of Nodal activity in the mouse node
    • Inacio J.M., et al. The dynamic right-to-left translocation of Cerl2 is involved in the regulation and termination of Nodal activity in the mouse node. PLoS ONE 2013, 8:e60406.
    • (2013) PLoS ONE , vol.8
    • Inacio, J.M.1
  • 55
    • 0037106188 scopus 로고    scopus 로고
    • Nodal activity in the node governs left-right asymmetry
    • Brennan J., et al. Nodal activity in the node governs left-right asymmetry. Genes Dev. 2002, 16:2339-2344.
    • (2002) Genes Dev. , vol.16 , pp. 2339-2344
    • Brennan, J.1
  • 56
    • 0037377604 scopus 로고    scopus 로고
    • Left-right patterning of the mouse lateral plate requires nodal produced in the node
    • Saijoh Y., et al. Left-right patterning of the mouse lateral plate requires nodal produced in the node. Dev. Biol. 2003, 256:160-172.
    • (2003) Dev. Biol. , vol.256 , pp. 160-172
    • Saijoh, Y.1
  • 57
    • 0033564874 scopus 로고    scopus 로고
    • Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements
    • Norris D.P., Robertson E.J. Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements. Genes Dev. 1999, 13:1575-1588.
    • (1999) Genes Dev. , vol.13 , pp. 1575-1588
    • Norris, D.P.1    Robertson, E.J.2
  • 58
    • 0033969935 scopus 로고    scopus 로고
    • Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2
    • Saijoh Y., et al. Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Mol. Cell 2000, 5:35-47.
    • (2000) Mol. Cell , vol.5 , pp. 35-47
    • Saijoh, Y.1
  • 59
    • 0033564195 scopus 로고    scopus 로고
    • Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer
    • Adachi H., et al. Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer. Genes Dev. 1999, 13:1589-1600.
    • (1999) Genes Dev. , vol.13 , pp. 1589-1600
    • Adachi, H.1
  • 60
    • 16244407435 scopus 로고    scopus 로고
    • Two nodal-responsive enhancers control left-right asymmetric expression of Nodal
    • Saijoh Y., et al. Two nodal-responsive enhancers control left-right asymmetric expression of Nodal. Dev. Dyn. 2005, 232:1031-1036.
    • (2005) Dev. Dyn. , vol.232 , pp. 1031-1036
    • Saijoh, Y.1
  • 61
    • 5444220114 scopus 로고    scopus 로고
    • Asymmetric Nodal expression in the mouse is governed by the combinatorial activities of two distinct regulatory elements
    • Vincent S.D., et al. Asymmetric Nodal expression in the mouse is governed by the combinatorial activities of two distinct regulatory elements. Mech. Dev. 2004, 121:1403-1415.
    • (2004) Mech. Dev. , vol.121 , pp. 1403-1415
    • Vincent, S.D.1
  • 62
    • 0012547516 scopus 로고    scopus 로고
    • Nodal signaling induces the midline barrier by activating Nodal expression in the lateral plate
    • Yamamoto M., et al. Nodal signaling induces the midline barrier by activating Nodal expression in the lateral plate. Development 2003, 130:1795-1804.
    • (2003) Development , vol.130 , pp. 1795-1804
    • Yamamoto, M.1
  • 63
    • 0034050737 scopus 로고    scopus 로고
    • Regulation of left-right patterning in mice by growth/differentiation factor-1
    • Rankin C.T., et al. Regulation of left-right patterning in mice by growth/differentiation factor-1. Nat. Genet. 2000, 24:262-265.
    • (2000) Nat. Genet. , vol.24 , pp. 262-265
    • Rankin, C.T.1
  • 64
    • 37249093137 scopus 로고    scopus 로고
    • Long-range action of Nodal requires interaction with GDF1
    • Tanaka C., et al. Long-range action of Nodal requires interaction with GDF1. Genes Dev. 2007, 21:3272-3282.
    • (2007) Genes Dev. , vol.21 , pp. 3272-3282
    • Tanaka, C.1
  • 65
    • 36549035731 scopus 로고    scopus 로고
    • Sulfated glycosaminoglycans are necessary for Nodal signal transmission from the node to the left lateral plate in the mouse embryo
    • Oki S., et al. Sulfated glycosaminoglycans are necessary for Nodal signal transmission from the node to the left lateral plate in the mouse embryo. Development 2007, 134:3893-3904.
    • (2007) Development , vol.134 , pp. 3893-3904
    • Oki, S.1
  • 66
    • 78751505793 scopus 로고    scopus 로고
    • Rapid differential transport of Nodal and Lefty on sulfated proteoglycan-rich extracellular matrix regulates left-right asymmetry in Xenopus
    • Marjoram L., Wright C. Rapid differential transport of Nodal and Lefty on sulfated proteoglycan-rich extracellular matrix regulates left-right asymmetry in Xenopus. Development 2011, 138:475-485.
    • (2011) Development , vol.138 , pp. 475-485
    • Marjoram, L.1    Wright, C.2
  • 67
    • 84861990952 scopus 로고    scopus 로고
    • Gut endoderm is involved in the transfer of left-right asymmetry from the node to the lateral plate mesoderm in the mouse embryo
    • Saund R.S., et al. Gut endoderm is involved in the transfer of left-right asymmetry from the node to the lateral plate mesoderm in the mouse embryo. Development 2012, 139:2426-2435.
    • (2012) Development , vol.139 , pp. 2426-2435
    • Saund, R.S.1
  • 68
    • 84858980401 scopus 로고    scopus 로고
    • Role of the gut endoderm in relaying left-right patterning in mice
    • Viotti M., et al. Role of the gut endoderm in relaying left-right patterning in mice. PLoS Biol. 2012, 10:e1001276.
    • (2012) PLoS Biol. , vol.10
    • Viotti, M.1
  • 69
    • 84964865489 scopus 로고    scopus 로고
    • Connexin26-mediated transfer of laterality cues in Xenopus
    • Beyer T., et al. Connexin26-mediated transfer of laterality cues in Xenopus. Biol. Open 2012, 1:473-481.
    • (2012) Biol. Open , vol.1 , pp. 473-481
    • Beyer, T.1
  • 70
    • 84870910751 scopus 로고    scopus 로고
    • Cilia, calcium and the basis of left-right asymmetry
    • Norris D.P. Cilia, calcium and the basis of left-right asymmetry. BMC Biol. 2012, 10:102.
    • (2012) BMC Biol. , vol.10 , pp. 102
    • Norris, D.P.1
  • 71
    • 57149127744 scopus 로고    scopus 로고
    • The development and evolution of left-right asymmetry in invertebrates: lessons from Drosophila and snails
    • Okumura T., et al. The development and evolution of left-right asymmetry in invertebrates: lessons from Drosophila and snails. Dev. Dyn. 2008, 237:3497-3515.
    • (2008) Dev. Dyn. , vol.237 , pp. 3497-3515
    • Okumura, T.1
  • 72
    • 33847006616 scopus 로고    scopus 로고
    • Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo
    • Blum M., et al. Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo. Differentiation 2007, 75:133-146.
    • (2007) Differentiation , vol.75 , pp. 133-146
    • Blum, M.1
  • 73
    • 33947525850 scopus 로고    scopus 로고
    • Genetic defects in ciliary structure and function
    • Zariwala M.A., et al. Genetic defects in ciliary structure and function. Annu. Rev. Physiol. 2007, 69:423-450.
    • (2007) Annu. Rev. Physiol. , vol.69 , pp. 423-450
    • Zariwala, M.A.1
  • 74
    • 35448961665 scopus 로고    scopus 로고
    • When cilia go bad: cilia defects and ciliopathies
    • Fliegauf M., et al. When cilia go bad: cilia defects and ciliopathies. Nat. Rev. Mol. Cell Biol. 2007, 8:880-893.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 880-893
    • Fliegauf, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.