-
1
-
-
77956206699
-
Mineeetr: An overview of a widely adopted distributed vehicle performance data mining system
-
(ACM, 2010
-
H. Kargupta, K. Sarkar and M. Gilligan, Mine°eetr: An overview of a widely adopted distributed vehicle performance data mining system, in Proc. 16th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (ACM, 2010), pp. 37-46.
-
Proc. 16th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining
, pp. 37-46
-
-
Kargupta, H.1
Sarkar, K.2
Gilligan, M.3
-
2
-
-
83055165842
-
Advances in data stream mining for mobile and ubiquitous environments
-
(ACM, 2011
-
S. Krishnaswamy, J. Gama and M. M. Gaber, Advances in data stream mining for mobile and ubiquitous environments, in Proc. 20th ACM Int. Conf. Information and Knowledge Management (ACM, 2011), pp. 2607-2608.
-
Proc. 20th ACM Int. Conf. Information and Knowledge Management
, pp. 2607-2608
-
-
Krishnaswamy, S.1
Gama, J.2
Gaber, M.M.3
-
3
-
-
58149235001
-
A descriptive framework for the field of data mining and knowledge discovery
-
Y. Peng, G. Kou, Y. Shi and Z. Chen, A descriptive framework for the field of data mining and knowledge discovery, International Journal of Information Technology & Decision Making 7(4) (2008) 639-682.
-
(2008)
International Journal of Information Technology & Decision Making
, vol.7
, Issue.4
, pp. 639-682
-
-
Peng, Y.1
Kou, G.2
Shi, Y.3
Chen, Z.4
-
4
-
-
0034592938
-
Mining high-speed data streams
-
(ACM, New York, USA
-
P. Domingos and G. Hulten, Mining high-speed data streams, in Proc. Sixth ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (ACM, New York, USA, 2000), pp. 71-80.
-
(2000)
Proc. Sixth ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining
, pp. 71-80
-
-
Domingos, P.1
Hulten, G.2
-
8
-
-
67049160126
-
A practical approach to classify evolving data streams: Training with limited amount of labeled data
-
(IEEE Computer Society, Washington, DC, USA
-
M. M. Masud, J. Gao, L. Khan, J. Han and B. Thuraisingham, A practical approach to classify evolving data streams: Training with limited amount of labeled data, in Proc. 2008 Eighth IEEE Int. Conf. Data Mining (IEEE Computer Society, Washington, DC, USA, 2008), pp. 929-934.
-
(2008)
Proc. 2008 Eighth IEEE Int. Conf. Data Mining
, pp. 929-934
-
-
Masud, M.M.1
Gao, J.2
Khan, L.3
Han, J.4
Thuraisingham, B.5
-
9
-
-
33646504407
-
On the utility of incremental feature selection for the classification of textual data streams
-
Springer
-
I. Katakis, G. Tsoumakas and I. Vlahavas, On the utility of incremental feature selection for the classification of textual data streams, in Advances in Informatics (Springer, 2005), pp. 338-348.
-
(2005)
Advances in Informatics
, pp. 338-348
-
-
Katakis, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
10
-
-
77954871285
-
Symbiotic data mining for personalized spam filtering
-
IEEE
-
P. Cortez, C. Lopes, P. Sousa, M. Rocha and M. Rio, Symbiotic data mining for personalized spam filtering, IEEE/WIC/ACM Int. Joint Conf., Web Intelligence and Intelligent Agent Technologies, 2009, WI-IAT'09, Vol. 1 (IEEE, 2009), pp. 149-156.
-
(2009)
IEEE/WIC/ACM Int. Joint Conf., Web Intelligence and Intelligent Agent Technologies 2009, WI-IAT'09
, vol.1
, pp. 149-156
-
-
Cortez, P.1
Lopes, C.2
Sousa, P.3
Rocha, M.4
Rio, M.5
-
11
-
-
33947403146
-
Distributed data mining in peer-to-peer networks
-
S. Datta, K. Bhaduri, C. Giannella, R. Wolff and H. Kargupta, Distributed data mining in peer-to-peer networks, IEEE Internet Computing 10(4) (2006) 18-26.
-
(2006)
IEEE Internet Computing
, vol.10
, Issue.4
, pp. 18-26
-
-
Datta, S.1
Bhaduri, K.2
Giannella, C.3
Wolff, R.4
Kargupta, H.5
-
12
-
-
79960111412
-
Distributed classification for pocket data mining
-
Springer
-
F. Stahl, M. Gaber, H. Liu, M. Bramer and P. Yu, Distributed classification for pocket data mining, in Foundations of Intelligent Systems (Springer, 2011), pp. 336-345.
-
(2011)
Foundations of Intelligent Systems
, pp. 336-345
-
-
Stahl, F.1
Gaber, M.2
Liu, H.3
Bramer, M.4
Yu, P.5
-
13
-
-
33748451273
-
Distributed feature extraction in a p2p setting-A case study
-
M. Wurst and K. Morik, Distributed feature extraction in a p2p setting-a case study. Future Generation Computer Systems 23(1) (2007) 69-75.
-
(2007)
Future Generation Computer Systems
, vol.23
, Issue.1
, pp. 69-75
-
-
Wurst, M.1
Morik, K.2
-
16
-
-
79953162254
-
Famcdm: A fusion approach of mcdm methods to rank multiclass classification algorithms
-
Y. Peng, G. Kou, G. Wang and Y. Shi, Famcdm: A fusion approach of mcdm methods to rank multiclass classification algorithms, Omega 39(6) (2011) 677-689.
-
(2011)
Omega
, vol.39
, Issue.6
, pp. 677-689
-
-
Peng, Y.1
Kou, G.2
Wang, G.3
Shi, Y.4
-
18
-
-
70349871603
-
Adaptive learning from evolving data streams
-
Springer
-
A. Bifet and R. Gavalda, Adaptive learning from evolving data streams, in Advances in Intelligent Data Analysis VIII (Springer, 2009), pp. 249-260.
-
(2009)
Advances in Intelligent Data Analysis
, vol.8
, pp. 249-260
-
-
Bifet, A.1
Gavalda, R.2
-
19
-
-
79959292611
-
Learning recurring concepts from data streams with a context-aware ensemble
-
ACM, 2011
-
J. B. Gomes, E. Menasalvas and P. A. C. Sousa, Learning recurring concepts from data streams with a context-aware ensemble, in Proc. 2011 ACM Symp. Applied Computing (ACM, 2011), pp. 994-999.
-
Proc. 2011 ACM Symp. Applied Computing
, pp. 994-999
-
-
Gomes, J.B.1
Menasalvas, E.2
Sousa, P.A.C.3
-
21
-
-
80455127184
-
Context-aware collaborative data stream mining in ubiquitous devices
-
Springer
-
J. B-artolo Gomes, M. Gaber, P. Sousa and E. Menasalvas, Context-aware collaborative data stream mining in ubiquitous devices, in Advances in Intelligent Data Analysis X (Springer, 2011), pp. 22-33.
-
(2011)
Advances in Intelligent Data Analysis
, vol.10
, pp. 22-33
-
-
B-Artolo Gomes, J.1
Gaber, M.2
Sousa, P.3
Menasalvas, E.4
-
23
-
-
0035788947
-
A streaming ensemble algorithm (SEA) for large-scale classification
-
(ACM, New York, USA
-
W. N. Street and Y. S. Kim, A streaming ensemble algorithm (SEA) for large-scale classification, in Proc. Seventh ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (ACM, New York, USA, 2001), pp. 377-382.
-
(2001)
Proc. Seventh ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining
, pp. 377-382
-
-
Street, W.N.1
Kim, Y.S.2
-
24
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
ACM, New York, USA
-
H. Wang, W. Fan, P. S. Yu and J. Han, Mining concept-drifting data streams using ensemble classifiers, in Proc. Ninth ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (ACM, New York, USA, 2003), pp. 226-235.
-
(2003)
Proc. Ninth ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
25
-
-
37749050180
-
Dynamic weighted majority: An ensemble method for drifting concepts
-
J. Z. Kolter and M. A. Maloof, Dynamic weighted majority: An ensemble method for drifting concepts, The Journal of Machine Learning Research 8 (2007) 2755-2790.
-
(2007)
The Journal of Machine Learning Research
, vol.8
, pp. 2755-2790
-
-
Kolter, J.Z.1
Maloof, M.A.2
-
26
-
-
33645543384
-
Eff ective classification of noisy data streams with attributeoriented dynamic classifier selection
-
X. Zhu, X. Wu and Y. Yang, Eff ective classification of noisy data streams with attributeoriented dynamic classifier selection, Knowledge and Information Systems 9 (2006) 339-363.
-
(2006)
Knowledge and Information Systems
, vol.9
, pp. 339-363
-
-
Zhu, X.1
Wu, X.2
Yang, Y.3
-
27
-
-
35348907876
-
Dynamic integration of classifiers for handling concept drift
-
A. Tsymbal, M. Pechenizkiy, P. Cunningham and S. Puuronen, Dynamic integration of classifiers for handling concept drift, Information Fusion 9 (2008) 56-68.
-
(2008)
Information Fusion
, vol.9
, pp. 56-68
-
-
Tsymbal, A.1
Pechenizkiy, M.2
Cunningham, P.3
Puuronen, S.4
-
28
-
-
33749017306
-
Mining in anticipation for concept change: Proactivereactive prediction in data streams
-
Y. Yang, X. Wu and X. Zhu, Mining in anticipation for concept change: Proactivereactive prediction in data streams, Data Mining and Knowledge Discovery 13(3) (2006) 261-289.
-
(2006)
Data Mining and Knowledge Discovery
, vol.13
, Issue.3
, pp. 261-289
-
-
Yang, Y.1
Wu, X.2
Zhu, X.3
-
29
-
-
33751022547
-
A framework for resource-aware knowledge discovery in data streams: A holistic approach with its application to clustering
-
ACM, New York, USA
-
M. M. Gaber and P. S. Yu, A framework for resource-aware knowledge discovery in data streams: A holistic approach with its application to clustering, in SAC '06: Proc. 2006 ACM Symp. Applied Computing (ACM, New York, USA, 2006), pp. 649-656.
-
(2006)
SAC '06: Proc. 2006 ACM Symp. Applied Computing
, pp. 649-656
-
-
Gaber, M.M.1
Yu, P.S.2
-
30
-
-
77953527363
-
Moa: Massive online analysis
-
A. Bifet, G. Holmes, R. Kirkby and B. Pfahringer, Moa: Massive online analysis, The Journal of Machine Learning Research 11 (2010) 1601-1604.
-
(2010)
The Journal of Machine Learning Research
, vol.11
, pp. 1601-1604
-
-
Bifet, A.1
Holmes, G.2
Kirkby, R.3
Pfahringer, B.4
|