-
1
-
-
38149105933
-
Early drift detection method
-
M. Baena-Garcia, J. del Campo-Ávila, R. Fidalgo, A. Bifet, R. Gavalda and R. Morales-Bueno, Early drift detection method, In Fourth International Workshop on Knowledge Discovery from Data Streams, Citeseer (2006), 77-86.
-
(2006)
Fourth International Workshop on Knowledge Discovery from Data Streams, Citeseer
, pp. 77-86
-
-
Baena-Garcia, M.1
Del Campo-Ávila, J.2
Fidalgo, R.3
Bifet, A.4
Gavalda, R.5
Morales-Bueno, R.6
-
2
-
-
0038225914
-
Contextual knowledge sharing and cooperation in intelligent assistant systems
-
R. Brezillon and J.C. Pomerol, Contextual knowledge sharing and cooperation in intelligent assistant systems, Travail Humain 62 (1999), 223-246.
-
(1999)
Travail Humain
, vol.62
, pp. 223-246
-
-
Brezillon, R.1
Pomerol, J.C.2
-
3
-
-
0035568918
-
A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications
-
Context-Aware Computing
-
A.K. Dey, G.D. Abowd and D. Salber, A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications, Human-Computer Interaction 16(2) (2001), 97-166. (Pubitemid 34216582)
-
(2001)
Human-Computer Interaction
, vol.16
, Issue.2-4
, pp. 97-166
-
-
Dey, A.K.1
Abowd, G.D.2
Salber, D.3
-
4
-
-
0034592938
-
Mining high-speed data streams
-
ACM New York, NY, USA
-
P. Domingos and G. Hulten, Mining high-speed data streams, In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM New York, NY, USA (2000), 71-80.
-
(2000)
Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 71-80
-
-
Domingos, P.1
Hulten, G.2
-
8
-
-
71049181507
-
Tracking recurring concepts with meta-learners
-
Aveiro, Portugal, Proceedings, Springer (October 12-15 2009)
-
J. Gama and P. Kosina, Tracking recurring concepts with meta-learners, In Progress in Artificial Intelligence: 14th Portuguese Conference on Artificial Intelligence, Epia 2009, Aveiro, Portugal, Proceedings, Springer (October 12-15 2009), 423.
-
Progress in Artificial Intelligence: 14th Portuguese Conference on Artificial Intelligence, Epia 2009
, vol.423
-
-
Gama, J.1
Kosina, P.2
-
9
-
-
33749618778
-
Learning with drift detection
-
J. Gama, P. Medas, G. Castillo and P. Rodrigues, Learning with drift detection, Lecture Notes in Computer Science (2004), 286-295. (Pubitemid 39751638)
-
(2004)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3171
, pp. 286-295
-
-
Gama, J.1
Medas, P.2
Castillo, G.3
Rodrigues, P.4
-
11
-
-
0032139819
-
Extracting hidden context
-
DOI 10.1023/A:1007420529897
-
M.B. Harries, C. Sammut and K. Horn. Extracting hidden context, Machine Learning 32(2) (1998), 101-126. (Pubitemid 40626077)
-
(1998)
Machine Learning
, vol.32
, Issue.2
, pp. 101-126
-
-
Harries, M.B.1
Sammut, C.2
Horn, K.3
-
13
-
-
0035789299
-
Mining time-changing data streams
-
ACM New York, NY, USA
-
G. Hulten, L. Spencer and P. Domingos, Mining time-changing data streams, In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM New York, NY, USA (2001), 97-106.
-
(2001)
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
15
-
-
77956234457
-
Tracking recurring contexts using ensemble classifiers: An application to email filtering
-
I. Katakis, G. Tsoumakas and I. Vlahavas, Tracking recurring contexts using ensemble classifiers: An application to email filtering, Knowledge and Information Systems, 1-21.
-
Knowledge and Information Systems
, pp. 1-21
-
-
Katakis, I.1
Tsoumakas, G.2
Vlahavas, I.3
-
16
-
-
84883713774
-
Learning drifting concepts: Example selection vs. example weighting
-
R. Klinkenberg, Learning drifting concepts: Example selection vs. example weighting, Intelligent Data Analysis 8(3) (2004), 281-300.
-
(2004)
Intelligent Data Analysis
, vol.8
, Issue.3
, pp. 281-300
-
-
Klinkenberg, R.1
-
18
-
-
37749050180
-
Dynamic weighted majority: An ensemble method for drifting concepts
-
J.Z. Kolter and M.A. Maloof, Dynamic weighted majority: An ensemble method for drifting concepts, The Journal of Machine Learning Research 8 (2007), 2755-2790.
-
(2007)
The Journal of Machine Learning Research
, vol.8
, pp. 2755-2790
-
-
Kolter, J.Z.1
Maloof, M.A.2
-
19
-
-
2942562388
-
Towards a theory of context spaces, Pervasive Computing and Communications Workshops
-
A. Padovitz, S.W. Loke and A. Zaslavsky, Towards a theory of context spaces, In Pervasive Computing and Communications Workshops, Proceedings of the Second IEEE Annual Conference on (2004), 38-42.
-
(2004)
Proceedings of the Second IEEE Annual Conference on
, pp. 38-42
-
-
Padovitz, A.1
Loke, S.W.2
Zaslavsky, A.3
-
22
-
-
0033337366
-
There is more to context than location
-
DOI 10.1016/S0097-8493(99)00120-X
-
A. Schmidt, M. Beigl and H.W. Gellersen, There is more to context than location, Computers & Graphics 23(6) (1999), 893-901. (Pubitemid 30546505)
-
(1999)
Computers and Graphics (Pergamon)
, vol.23
, Issue.6
, pp. 893-901
-
-
Schmidt, A.1
Beigl, M.2
Gellersen, H.-W.3
-
23
-
-
41849096368
-
Boosting classifiers for drifting concepts
-
M. Scholz and R. Klinkenberg, Boosting classifiers for drifting concepts, Intelligent Data Analysis 11(1) (2007), 3-28.
-
(2007)
Intelligent Data Analysis
, vol.11
, Issue.1
, pp. 3-28
-
-
Scholz, M.1
Klinkenberg, R.2
-
24
-
-
0035788947
-
A streaming ensemble algorithm (SEA) for large-scale classification
-
ACM New York, NY, USA
-
W.N. Street and Y.S. Kim, A streaming ensemble algorithm (SEA) for large-scale classification, In Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM New York, NY, USA (2001), 377-382.
-
(2001)
Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 377-382
-
-
Street, W.N.1
Kim, Y.S.2
-
25
-
-
77956258912
-
The problem of concept drift: Definitions and related work
-
Trinity College Dublin
-
A. Tsymbal, The problem of concept drift: Definitions and related work, Computer Science Department, Trinity College Dublin, 2004.
-
(2004)
Computer Science Department
-
-
Tsymbal, A.1
-
27
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
ACM New York, NY, USA
-
H. Wang, W. Fan, P.S. Yu and J. Han, Mining concept-drifting data streams using ensemble classifiers, In Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM New York, NY, USA (2003), 226-235.
-
(2003)
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
28
-
-
0031164523
-
Tracking Context Changes through Meta-Learning
-
G. Widmer, Tracking context changes through meta-learning, Machine Learning 27(3) (1997), 259-286. (Pubitemid 127510031)
-
(1997)
Machine Learning
, vol.27
, Issue.3
, pp. 259-286
-
-
Widmer, G.1
-
29
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
G. Widmer and M. Kubat, Learning in the presence of concept drift and hidden contexts, Machine Learning 23(1) (1996), 69-101. (Pubitemid 126737384)
-
(1996)
Machine Learning
, vol.23
, Issue.1
, pp. 69-101
-
-
Widmer, G.1
-
31
-
-
32344442287
-
Combining proactive and reactive predictions for data streams
-
Y. Yang, X. Wu and X. Zhu, Combining proactive and reactive predictions for data streams, In Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, ACM (2005), 715.
-
(2005)
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, ACM
, vol.715
-
-
Yang, Y.1
Wu, X.2
Zhu, X.3
-
32
-
-
33749017306
-
Mining in anticipation for concept change: Proactive-reactive prediction in data streams
-
DOI 10.1007/s10618-006-0050-x
-
Y. Yang, X. Wu and X. Zhu, Mining in anticipation for concept change: Proactive-reactive prediction in data streams, Data Mining and Knowledge Discovery 13(3) (2006), 261-289. (Pubitemid 44455021)
-
(2006)
Data Mining and Knowledge Discovery
, vol.13
, Issue.3
, pp. 261-289
-
-
Yang, Y.1
Wu, X.2
Zhu, X.3
-
33
-
-
35248857877
-
Editorial: Online, interactive, and anytime data mining
-
M.J. Zaki, Editorial: Online, interactive, and anytime data mining, SIGKDD Explorations 3(2), 2002.
-
(2002)
SIGKDD Explorations
, vol.3
, Issue.2
-
-
Zaki, M.J.1
|