메뉴 건너뛰기




Volumn 16, Issue 2, 2012, Pages 335-338

Exact solutions of time-fractional heat conduction equation by the fractional complex transform

Author keywords

Exact solution; Fractional complex transform; Modified riemann liouville derivative; Time fractional heat conduction equation

Indexed keywords

LIOUVILLE EQUATION;

EID: 84868609962     PISSN: 03549836     EISSN: None     Source Type: Journal    
DOI: 10.2298/TSCI110503069L     Document Type: Article
Times cited : (74)

References (14)
  • 1
    • 79955470495 scopus 로고    scopus 로고
    • Fractional Complex Transform for Fractional Differential Equations
    • Li, Z.-B., He, J. H, Fractional Complex Transform for Fractional Differential Equations, Mathematical and Computational Applications, 15 (2010), 5, pp. 970-973
    • (2010) Mathematical and Computational Applications , vol.15 , Issue.5
    • Li, Z.-B.1    He, H.J.2
  • 3
    • 77957924322 scopus 로고    scopus 로고
    • Cauchy's Integral Formula via the Modified Riemann Liouville Derivative for Analytic Functions of Fractional Order
    • Jumarie, G., Cauchy's Integral Formula via the Modified Riemann Liouville Derivative for Analytic Functions of Fractional Order, Applied Mathematics Letters, 23 (2010), 12, pp. 1444-1450
    • (2010) Applied Mathematics Letters , vol.23 , Issue.12 , pp. 1444-1450
    • Jumarie, G.1
  • 4
    • 34249788181 scopus 로고    scopus 로고
    • Fractional Partial Differental Equations and Modified Riemann Liouville Derivative New Methods for Solution
    • Jumarie, G., Fractional Partial Differental Equations and Modified Riemann Liouville Derivative New Methods for Solution, Journal of Applied Mathematics and Computing, 24 (2007), 1-2, pp. 31-48
    • (2007) Journal of Applied Mathematics and Computing , vol.24 , Issue.1-2 , pp. 31-48
    • Jumarie, G.1
  • 5
    • 33745742268 scopus 로고    scopus 로고
    • Modified Riemann Liouville Derivative and Fractional Taylor Series of Non Differentiable Functions Further Results
    • Jumarie, G., Modified Riemann Liouville Derivative and Fractional Taylor Series of Non Differentiable Functions Further Results, Computers and Mathematics with Applications, 51 (2006), 9-10, pp. 1367-1376
    • (2006) Computers and Mathematics with Applications , vol.51 , Issue.9-10 , pp. 1367-1376
    • Jumarie, G.1
  • 6
    • 79953679592 scopus 로고    scopus 로고
    • Approximate Solutions to Fractional Subdiffusion Equations
    • Hristov, J., Approximate Solutions to Fractional Subdiffusion Equations, European Physical Journal, 193 (2011), 1, PP 229-243
    • (2011) European Physical Journal , vol.193 , Issue.1 , pp. 229-243
    • Hristov, J.1
  • 7
    • 79955127833 scopus 로고    scopus 로고
    • Starting Radial Subdiffusion from a Central Point through a Diverging Medium (A sphere)
    • Hristov, J., Starting Radial Subdiffusion from a Central Point through a Diverging Medium (A sphere): Heat Balance Integral Method, Thermal Science, 15 (2011), Suppl., pp. S5-S20
    • Heat Balance Integral Method, Thermal Science , vol.15 , Issue.SUPPL.
    • Hristov, J.1
  • 8
    • 77955895114 scopus 로고    scopus 로고
    • Heat Balance Integral to Fractional (Half Time) Heat Diffusion Sub Model
    • Hristov, J., Heat Balance Integral to Fractional (Half Time) Heat Diffusion Sub Model, Thermal Science, 14 (2010), 2, pp. 291-316
    • (2010) Thermal Science , vol.14 , Issue.2 , pp. 291-316
    • Hristov, J.1
  • 9
    • 84890256375 scopus 로고    scopus 로고
    • Homotopy Perturbation Pade Technique for Solving Fractional Riccati Differential Equations
    • Jafari, H., et al., Homotopy Perturbation Pade Technique for Solving Fractional Riccati Differential Equations, Int. J. Nonlinear Sci. Num., 11 (2010), Suppl., pp. S271-S276
    • (2010) Int. J. Nonlinear Sci. Num. , vol.11 , Issue.SUPPL.
    • Jafari, H.1
  • 10
    • 77953205877 scopus 로고    scopus 로고
    • The Homotopy Perturbation Method for Multi Order Time Fractional Differential Equations
    • Golbabai, A., Sayevand, K., The Homotopy Perturbation Method for Multi Order Time Fractional Differential Equations, Nonlinear Science Letters A, 1 (2010), 2, pp. 147-154
    • (2010) Nonlinear Science Letters A , vol.1 , Issue.2 , pp. 147-154
    • Golbabai, A.1    Sayevand, K.2
  • 11
    • 0032307661 scopus 로고    scopus 로고
    • Approximate Analytical Solution for Seepage Flow with Fractional Derivatives in Porous Media
    • He, J.-H., Approximate Analytical Solution for Seepage Flow with Fractional Derivatives in Porous Media, Computer Methods in Applied Mechanics and Engineering, 167 (1998), 1-2, pp. 57-68
    • (1998) Computer Methods in Applied Mechanics and Engineering , vol.167 , Issue.1-2 , pp. 57-68
    • He, J.-H.1
  • 12
    • 79251635229 scopus 로고    scopus 로고
    • Fractional Sub Equation Method and Its Applications to Nonlinear Fractional PDEs
    • Zhang, S., Zhang, H. Q., Fractional Sub Equation Method and Its Applications to Nonlinear Fractional PDEs, Physics Letters A, 375 (2011), 7, pp. 1069-1073
    • (2011) Physics Letters A , vol.375 , Issue.7 , pp. 1069-1073
    • Zhang, S.1    Zhang, Q.H.2
  • 13
    • 79955157832 scopus 로고    scopus 로고
    • Analytical Methods for Thermal Science - An Elementary Introduction
    • He, J.-H., Analytical Methods for Thermal Science - An Elementary Introduction, Thermal Science, 15 (2011), Supll, pp. S1-S3
    • (2011) Thermal Science , vol.15 , Issue.SUPPL.
    • He, J.-H.1
  • 14
    • 79955145165 scopus 로고    scopus 로고
    • A New Fractal Derivation
    • He, J.-H., A New Fractal Derivation, Thermal Science, 15 (2011), Suppl., pp. S145-S147
    • (2011) Thermal Science , vol.15 , Issue.SUPPL.
    • He, J.-H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.