메뉴 건너뛰기




Volumn 5, Issue 6, 2012, Pages 438-444

Solving system of fractional differential equations by fractional complex transform method

Author keywords

Fractional complex transform; Jumarie's derivative; System of differential equation

Indexed keywords


EID: 84861498408     PISSN: 19963343     EISSN: None     Source Type: Journal    
DOI: 10.3923/ajaps.2012.438.444     Document Type: Article
Times cited : (11)

References (21)
  • 2
    • 84855874477 scopus 로고    scopus 로고
    • Numerical solution of fractional ordinary differential equations using a multiquadric approximation scheme
    • Avaji, M., J.S. Hafshejani, S.S. Dehcheshmeh and D.F. Ghahfarokhi, 2012. Numerical solution of fractional ordinary differential equations using a multiquadric approximation scheme. J. Applied Sci., 12: 168-173.
    • (2012) J. Applied Sci. , vol.12 , pp. 168-173
    • Avaji, M.1    Hafshejani, J.S.2    Dehcheshmeh, S.S.3    Ghahfarokhi, D.F.4
  • 3
    • 0141961581 scopus 로고    scopus 로고
    • Solution of the system of differential equations by differential transform method
    • Ayaz, F., 2004. Solution of the system of differential equations by differential transform method. Applied Math. Comput., 147: 547-567.
    • (2004) Applied Math. Comput. , vol.147 , pp. 547-567
    • Ayaz, F.1
  • 4
    • 77953205877 scopus 로고    scopus 로고
    • The homotopy perturbation method for multi-order time fractional differential equations
    • Golbabai, A. and K. Sayevand, 2010. The homotopy perturbation method for multi-order time fractional differential equations. Nonlinear Sci. Lett. A, 1: 147-154.
    • (2010) Nonlinear Sci. Lett. A , vol.1 , pp. 147-154
    • Golbabai, A.1    Sayevand, K.2
  • 5
    • 84860388823 scopus 로고    scopus 로고
    • A short remark on fractional variational iteration method
    • He, J.H., 2011. A short remark on fractional variational iteration method. Phys. Lett. A, 375: 3362-3364.
    • (2011) Phys. Lett. A , vol.375 , pp. 3362-3364
    • He, J.H.1
  • 7
    • 84861502505 scopus 로고    scopus 로고
    • An approximate method for solving nonlinear heat diffusion problems in spherical media
    • Helal, M.M., 2005. An approximate method for solving nonlinear heat diffusion problems in spherical media. J. Applied Sci., 5: 965-972.
    • (2005) J. Applied Sci. , vol.5 , pp. 965-972
    • Helal, M.M.1
  • 8
    • 77953052200 scopus 로고    scopus 로고
    • An agei method for solving four-order diffusion equations
    • Jin, Y., J. Jiang and T. Ma, 2010. An agei method for solving four-order diffusion equations. Inform. Technol. J., 9: 1044-1048.
    • (2010) Inform. Technol. J. , vol.9 , pp. 1044-1048
    • Jin, Y.1    Jiang, J.2    Ma, T.3
  • 9
    • 34249788181 scopus 로고    scopus 로고
    • Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution
    • Jumarie, G., 2007. Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution. J. Applied Math. Comput., 24: 31-48.
    • (2007) J. Applied Math. Comput. , vol.24 , pp. 31-48
    • Jumarie, G.1
  • 10
    • 77957924322 scopus 로고    scopus 로고
    • Cauchy's integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order
    • Jumarie, G., 2010. Cauchy's integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order. Applied Math. Lett., 23: 1444-1450.
    • (2010) Applied Math. Lett. , vol.23 , pp. 1444-1450
    • Jumarie, G.1
  • 11
    • 67649625307 scopus 로고    scopus 로고
    • Assessment of modified variational iteration method in BVPs high-order differential equations
    • Kazemnia, M., S.A. Zahedi, M. Vaezi and N. Tolou, 2008. Assessment of modified variational iteration method in BVPs high-order differential equations. J. Applied Sci., 8: 4192-4197.
    • (2008) J. Applied Sci. , vol.8 , pp. 4192-4197
    • Kazemnia, M.1    Zahedi, S.A.2    Vaezi, M.3    Tolou, N.4
  • 12
    • 79955470495 scopus 로고    scopus 로고
    • Fractional complex transform for fractional differential equations
    • Li, Z.B. and J.H. He, 2010. Fractional complex transform for fractional differential equations. Math. Comput. Appl., 15: 970-973.
    • (2010) Math. Comput. Appl. , vol.15 , pp. 970-973
    • Li, Z.B.1    He, J.H.2
  • 13
    • 80051828842 scopus 로고    scopus 로고
    • Application of the fractional complex transform to fractional differential equations
    • Li, Z.B. and J.H. He, 2011. Application of the fractional complex transform to fractional differential equations. Nonlinear Sci. Lett. A Math. Phys. Mech., 2: 121-126.
    • (2011) Nonlinear Sci. Lett. A Math. Phys. Mech. , vol.2 , pp. 121-126
    • Li, Z.B.1    He, J.H.2
  • 14
    • 84860187518 scopus 로고    scopus 로고
    • Mathematical modeling of heat conduction in a disk brake system during braking
    • Mazidi, H., S. Jalalifar, S. Jalalifar and J. Chakhoo, 2011. Mathematical modeling of heat conduction in a disk brake system during braking. Asian J. Applied Sci., 4: 119-136.
    • (2011) Asian J. Applied Sci. , vol.4 , pp. 119-136
    • Mazidi, H.1    Jalalifar, S.2    Jalalifar, S.3    Chakhoo, J.4
  • 15
    • 33748425302 scopus 로고    scopus 로고
    • Numerical comparison of methods for solving linear differential equations of fractional order
    • Momani, S. and Z. Odibat, 2007. Numerical comparison of methods for solving linear differential equations of fractional order. Chaos Solitons Fractals, 31: 1248-1255.
    • (2007) Chaos Solitons Fractals , vol.31 , pp. 1248-1255
    • Momani, S.1    Odibat, Z.2
  • 16
    • 84860231737 scopus 로고    scopus 로고
    • Analysis of homotopy perturbation method for solution of hyperbolic equations with an integral condition
    • Sharma, P.R. and G. Methi, 2012. Analysis of homotopy perturbation method for solution of hyperbolic equations with an integral condition. Asian J. Applied Sci., 5: 85-95.
    • (2012) Asian J. Applied Sci. , vol.5 , pp. 85-95
    • Sharma, P.R.1    Methi, G.2
  • 17
    • 79958267826 scopus 로고    scopus 로고
    • An application method for the solution of second order non linear ordinary differential equations by chebyshev polynomials
    • Taiwo, O.A. and A. Abubakar, 2011. An application method for the solution of second order non linear ordinary differential equations by chebyshev polynomials. Asian J. Applied Sci., 4: 255-262.
    • (2011) Asian J. Applied Sci. , vol.4 , pp. 255-262
    • Taiwo, O.A.1    Abubakar, A.2
  • 18
    • 34250643564 scopus 로고    scopus 로고
    • Homotopy perturbation method for fractional KdV equation
    • Wang, Q., 2007. Homotopy perturbation method for fractional KdV equation. Applied Math. Comput., 190: 1795-1802.
    • (2007) Applied Math. Comput. , vol.190 , pp. 1795-1802
    • Wang, Q.1
  • 19
    • 77953478991 scopus 로고    scopus 로고
    • Fractional variational iteration method and its application
    • Wu, G.C. and E.W.M. Lee, 2010. Fractional variational iteration method and its application. Phys. Lett. A, 374: 2506-2509.
    • (2010) Phys. Lett. A , vol.374 , pp. 2506-2509
    • Wu, G.C.1    Lee, E.W.M.2
  • 20
    • 84861498250 scopus 로고    scopus 로고
    • Computations of fractional differentiation by lagrange interpolation polynomial and chebyshev polynomial
    • Zhang X., X. Guo and A. Xu, 2012. Computations of fractional differentiation by lagrange interpolation polynomial and chebyshev polynomial. Inform. Technol. J., 11: 557-559.
    • (2012) Inform. Technol. J. , vol.11 , pp. 557-559
    • Zhang, X.1    Guo, X.2    Xu, A.3
  • 21
    • 79251611305 scopus 로고    scopus 로고
    • A generalized exp-function method for fractional riccati differential equations
    • Zhang, S., Q.A. Zong, D. Liu and Q. Gao, 2010. A generalized exp-function method for fractional riccati differential equations. Commun. Fractional Calculus, 1: 48-51.
    • (2010) Commun. Fractional Calculus , vol.1 , pp. 48-51
    • Zhang, S.1    Zong, Q.A.2    Liu, D.3    Gao, Q.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.