메뉴 건너뛰기




Volumn 56, Issue 5-6, 2011, Pages 636-643

Lyapunov-krasovskii stability theorem for fractional systems with delay

Author keywords

Fractional nonlinear systems; Lyapunov krasovskii theorem; Stability; Time delay systems

Indexed keywords


EID: 79960028808     PISSN: 1221146X     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (65)

References (22)
  • 4
    • 70349977336 scopus 로고    scopus 로고
    • Optimal approximation of fractional derivatives through discrete-time fractions using genetic algorithms
    • J.A.T. Machado, A.M. Galhano and A.M. Oliveira, Optimal approximation of fractional derivatives through discrete-time fractions using genetic algorithms, Commun. Nonlin. Sci. Num. Simul., 15(3), (2010) 482-490.
    • (2010) Commun. Nonlin. Sci. Num. Simul , vol.15 , Issue.3 , pp. 482-490
    • Machado, J.A.T.1    Galhano, A.M.2    Oliveira, A.M.3
  • 5
    • 0029373148 scopus 로고
    • On sufficient conditions for stability independent of delay
    • J. Chen, D. Xu and B. Shafai, On sufficient conditions for stability independent of delay, IEEE Trans.Automat. Control AC, 40 (9), (1995) 1675-1680.
    • (1995) IEEE Trans. Automat Control AC , vol.40 , Issue.9 , pp. 1675-1680
    • Chen, J.1    Xu, D.2    Shafai, B.3
  • 7
    • 0021439912 scopus 로고
    • On the appearance of the fractional derivative in the behavior of real materials
    • R.L. Bagley and O. Torvik, On the appearance of the fractional derivative in the behavior of real materials, J. Appl. Mech., 51, (1984) 294-298.
    • (1984) J. Appl. Mech , vol.51 , pp. 294-298
    • Bagley, R.L.1    Torvik, O.2
  • 10
    • 0000196448 scopus 로고
    • Basic characteristics of a fractance device
    • M. Nakagava and K. Sorimachi, Basic characteristics of a fractance device, IEICE Transactions, Fundamentals, E75-A(12), (1992), 1814-1818.
    • (1992) IEICE Transactions, Fundamentals , vol.75 , Issue.12 , pp. 1814-1818
    • Nakagava, M.1    Sorimachi, K.2
  • 12
    • 0032653954 scopus 로고    scopus 로고
    • Fractional-order systems and PI D λ μ-controllers
    • I. Podlubny, Fractional-order systems and PI D λ μ-controllers, IEEE Transactions on Automatic Control, 44(1), (1999) 208-214.
    • (1999) IEEE Transactions On Automatic Control , vol.44 , Issue.1 , pp. 208-214
    • Podlubny, I.1
  • 13
    • 0343715573 scopus 로고    scopus 로고
    • State-space representation for fractional order controllers
    • H.F. Raynaud and A. Zergainoh, State-space representation for fractional order controllers, Automatica, 36(7), (2000) 1017-1021.
    • (2000) Automatica , vol.36 , Issue.7 , pp. 1017-1021
    • Raynaud, H.F.1    Zergainoh, A.2
  • 14
    • 27744589296 scopus 로고    scopus 로고
    • Finite time stability analysis of PD α fractional control of robotic time-delay systems
    • M.P. Lazarevic, Finite time stability analysis of PD α fractional control of robotic time-delay systems, Mech. Res. Comm., 33, (2006) 269-279.
    • (2006) Mech. Res. Comm , vol.33 , pp. 269-279
    • Lazarevic, M.P.1
  • 15
    • 38949212976 scopus 로고    scopus 로고
    • Some results of linear fractional order time-delay system
    • X. Zhang, Some results of linear fractional order time-delay system, Appl. Math. Comp., 197, (2008) 407-411.
    • (2008) Appl. Math. Comp , vol.197 , pp. 407-411
    • Zhang, X.1
  • 16
    • 17844411437 scopus 로고    scopus 로고
    • Lyapunov stability solutions of fractional integro-differential equations
    • S. Momani and S. Hadid, Lyapunov stability solutions of fractional integro-differential equations, Int. J. Math. Math. Sci., 47, (2004) 2503-2507.
    • (2004) Int. J. Math. Math. Sci , vol.47 , pp. 2503-2507
    • Momani, S.1    Hadid, S.2
  • 18
    • 79960998775 scopus 로고    scopus 로고
    • Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability
    • in press
    • Y. Li, Y.Q. Chen and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comp. Math. Appl., (in press), 2009.
    • (2009) Comp. Math. Appl
    • Li, Y.1    Chen, Y.Q.2    Podlubny, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.