메뉴 건너뛰기




Volumn 35, Issue 1, 2014, Pages 245-252

Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration

Author keywords

Bioactivity; Bioceramics; Bone regeneration; Calcium phosphates; Hydroxyapatite; Silicon substitution

Indexed keywords

BIOACTIVITY; BIOCOMPATIBILITY; CALCIUM PHOSPHATE; HYDROXYAPATITE; REPAIR; SILICON COMPOUNDS; TISSUE REGENERATION;

EID: 84890020827     PISSN: 09284931     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.msec.2013.11.013     Document Type: Review
Times cited : (138)

References (126)
  • 1
    • 0023488581 scopus 로고
    • Bone histomorphometry: Standardization of nomenclature, symbols, and units: Report of the ASBMR histomorphometry nomenclature committee
    • A.M. Parfitt, M.K. Drezner, F.H. Glorieux, J.A. Kanis, H. Malluche, and P.J. Meunier Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR histomorphometry nomenclature committee J. Bone Miner. Res. 2 1987 595 610
    • (1987) J. Bone Miner. Res. , vol.2 , pp. 595-610
    • Parfitt, A.M.1    Drezner, M.K.2    Glorieux, F.H.3    Kanis, J.A.4    Malluche, H.5    Meunier, P.J.6
  • 2
    • 0031005576 scopus 로고    scopus 로고
    • Osteoprotegerin: A novel secreted protein involved in the regulation of bone density
    • W.S. Simonet, D.L. Lacey, C.R. Dunstan, M. Kelley, M.-S. Chang, and R. Lüthy Osteoprotegerin: a novel secreted protein involved in the regulation of bone density Cell 89 1997 309 319
    • (1997) Cell , vol.89 , pp. 309-319
    • Simonet, W.S.1    Lacey, D.L.2    Dunstan, C.R.3    Kelley, M.4    Chang, M.-S.5    Lüthy, R.6
  • 3
    • 0037673945 scopus 로고    scopus 로고
    • Osteoclast differentiation and activation
    • W.J. Boyle, W.S. Simonet, and D.L. Lacey Osteoclast differentiation and activation Nature 423 2003 337 342
    • (2003) Nature , vol.423 , pp. 337-342
    • Boyle, W.J.1    Simonet, W.S.2    Lacey, D.L.3
  • 4
    • 33644872519 scopus 로고    scopus 로고
    • The new bone biology: Pathologic, molecular, and clinical correlates
    • M.M. Cohen Jr. The new bone biology: pathologic, molecular, and clinical correlates Am. J. Med. Genet. A 140A 2006 2646 2706
    • (2006) Am. J. Med. Genet. A , vol.140 A , pp. 2646-2706
    • Cohen, Jr.M.M.1
  • 5
    • 0037114250 scopus 로고    scopus 로고
    • Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods
    • S. Koutsopoulos Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods J. Biomed. Mater. Res. 62 2002 600 612
    • (2002) J. Biomed. Mater. Res. , vol.62 , pp. 600-612
    • Koutsopoulos, S.1
  • 6
    • 84883168574 scopus 로고    scopus 로고
    • Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: A review
    • 10.1089/ten.teb.2012.0624
    • S.M. Zakaria, S.H. Sharif Zein, M.R. Othman, F. Yang, and J. Jansen Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: a review Tissue Eng. B Rev. 2013 10.1089/ten.teb.2012.0624
    • (2013) Tissue Eng. B Rev.
    • Zakaria, S.M.1    Sharif Zein, S.H.2    Othman, M.R.3    Yang, F.4    Jansen, J.5
  • 8
    • 77956625309 scopus 로고    scopus 로고
    • Sol-gel silica-based biomaterials and bone tissue regeneration
    • D. Arcos, and M. Vallet-Regí Sol-gel silica-based biomaterials and bone tissue regeneration Acta Biomater. 6 2010 2874 2888
    • (2010) Acta Biomater. , vol.6 , pp. 2874-2888
    • Arcos, D.1    Vallet-Regí, M.2
  • 9
    • 0031651017 scopus 로고    scopus 로고
    • Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants
    • W. Suchanek, and M. Yoshimura Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants J. Mater. Res. 13 1998 94 117
    • (1998) J. Mater. Res. , vol.13 , pp. 94-117
    • Suchanek, W.1    Yoshimura, M.2
  • 10
    • 27644579095 scopus 로고    scopus 로고
    • Development of nanocomposites for bone grafting
    • R. Murugan, and S. Ramakrishna Development of nanocomposites for bone grafting Compos. Sci. Technol. 65 2005 2385 2406
    • (2005) Compos. Sci. Technol. , vol.65 , pp. 2385-2406
    • Murugan, R.1    Ramakrishna, S.2
  • 14
    • 0024043765 scopus 로고
    • Silicon as a trace nutrient
    • E.M. Carlisle Silicon as a trace nutrient Sci. Total Environ. 73 1988 95 106
    • (1988) Sci. Total Environ. , vol.73 , pp. 95-106
    • Carlisle, E.M.1
  • 15
    • 0001797920 scopus 로고
    • The organic matrix of bone tissue
    • Lippincott Philadelphia, US
    • J.T. Triffitt The organic matrix of bone tissue Fundam. Clin. Bone Physiol 1980 Lippincott Philadelphia, US 45 82
    • (1980) Fundam. Clin. Bone Physiol , pp. 45-82
    • Triffitt, J.T.1
  • 17
    • 0026004726 scopus 로고
    • Cellular engineering
    • R.M. Nerem Cellular engineering Ann. Biomed. Eng. 19 1991 529 545
    • (1991) Ann. Biomed. Eng. , vol.19 , pp. 529-545
    • Nerem, R.M.1
  • 18
    • 0027595948 scopus 로고
    • Tissue engineering
    • R. Langer, and J.P. Vacanti Tissue engineering Science 260 1993 920 926
    • (1993) Science , vol.260 , pp. 920-926
    • Langer, R.1    Vacanti, J.P.2
  • 19
    • 0017595372 scopus 로고
    • Inverse relation of silicon in drinking water and atherosclerosis in Finland
    • K. Schwarz, B. Ricci, S. Punsar, and M. Karvonen Inverse relation of silicon in drinking water and atherosclerosis in Finland Lancet 309 1977 538 539
    • (1977) Lancet , vol.309 , pp. 538-539
    • Schwarz, K.1    Ricci, B.2    Punsar, S.3    Karvonen, M.4
  • 21
    • 34249889868 scopus 로고    scopus 로고
    • Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study
    • M. Marcacci, E. Kon, V. Moukhachev, A. Lavroukov, S. Kutepov, and R. Quarto Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study Tissue Eng. 13 2007 947 955
    • (2007) Tissue Eng. , vol.13 , pp. 947-955
    • Marcacci, M.1    Kon, E.2    Moukhachev, V.3    Lavroukov, A.4    Kutepov, S.5    Quarto, R.6
  • 22
    • 0036143060 scopus 로고    scopus 로고
    • The use of titanium mesh cages in the cervical spine
    • K.D. Riew, and J.M. Rhee The use of titanium mesh cages in the cervical spine Clin. Orthop. 2002 47 54
    • (2002) Clin. Orthop. , pp. 47-54
    • Riew, K.D.1    Rhee, J.M.2
  • 23
    • 0346285780 scopus 로고
    • Natural history of autografts and allografts
    • M.W.J. Older, Springer London London
    • V.M. Goldberg Natural history of autografts and allografts M.W.J. Older, Bone Implant Grafting 1992 Springer London London 9 12
    • (1992) Bone Implant Grafting , pp. 9-12
    • Goldberg, V.M.1
  • 24
    • 0023264383 scopus 로고
    • Biomechanical aspects of bone autografts and allografts
    • R. Pelker, and G. Friedlaender Biomechanical aspects of bone autografts and allografts Orthop. Clin. North Am. 18 1987 235 239
    • (1987) Orthop. Clin. North Am. , vol.18 , pp. 235-239
    • Pelker, R.1    Friedlaender, G.2
  • 26
    • 0037039862 scopus 로고    scopus 로고
    • Third-generation biomedical materials
    • L.L. Hench, and J.M. Polak Third-generation biomedical materials Science 295 2002 1014 1017
    • (2002) Science , vol.295 , pp. 1014-1017
    • Hench, L.L.1    Polak, J.M.2
  • 27
    • 1942451976 scopus 로고    scopus 로고
    • Benefit and risk in tissue engineering
    • D. Williams Benefit and risk in tissue engineering Mater. Today 7 2004 24 29
    • (2004) Mater. Today , vol.7 , pp. 24-29
    • Williams, D.1
  • 29
    • 39149124477 scopus 로고    scopus 로고
    • State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective
    • D.W. Hutmacher, J.T. Schantz, C.X.F. Lam, K.C. Tan, and T.C. Lim State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective J. Tissue Eng. Regen. Med. 1 2007 245 260
    • (2007) J. Tissue Eng. Regen. Med. , vol.1 , pp. 245-260
    • Hutmacher, D.W.1    Schantz, J.T.2    Lam, C.X.F.3    Tan, K.C.4    Lim, T.C.5
  • 30
    • 0019817450 scopus 로고
    • The essential trace elements
    • W. Mertz The essential trace elements Science 213 1981 1332 1338
    • (1981) Science , vol.213 , pp. 1332-1338
    • Mertz, W.1
  • 31
    • 0020163517 scopus 로고
    • The nutritional essentiality of silicon
    • E.M. Carlisle The nutritional essentiality of silicon Nutr. Rev. 40 1982 193 198
    • (1982) Nutr. Rev. , vol.40 , pp. 193-198
    • Carlisle, E.M.1
  • 32
    • 0014951015 scopus 로고
    • Silicon: A possible factor in bone calcification
    • E.M. Carlisle Silicon: a possible factor in bone calcification Science 167 1970 279 280
    • (1970) Science , vol.167 , pp. 279-280
    • Carlisle, E.M.1
  • 33
    • 0015496222 scopus 로고
    • Growth-promoting effects of silicon in rats
    • K. Schwarz, and D.B. Milne Growth-promoting effects of silicon in rats Nature 239 1972 333 334
    • (1972) Nature , vol.239 , pp. 333-334
    • Schwarz, K.1    Milne, D.B.2
  • 34
    • 0035876206 scopus 로고    scopus 로고
    • Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro
    • T. Gao, H.T. Aro, H. Ylänen, and E. Vuorio Silica-based bioactive glasses modulate expression of bone morphogenetic protein-2 mRNA in Saos-2 osteoblasts in vitro Biomaterials 22 2001 1475 1483
    • (2001) Biomaterials , vol.22 , pp. 1475-1483
    • Gao, T.1    Aro, H.T.2    Ylänen, H.3    Vuorio, E.4
  • 35
    • 0019365029 scopus 로고
    • Silicon: A requirement in bone formation independent of vitamin D1
    • E.M. Carlisle Silicon: a requirement in bone formation independent of vitamin D1 Calcif. Tissue Int. 33 1981 27 34
    • (1981) Calcif. Tissue Int. , vol.33 , pp. 27-34
    • Carlisle, E.M.1
  • 36
    • 0042226710 scopus 로고
    • Chapter 27. Silicon in biology and medicine
    • Elsevier
    • M.G. Voronkov Chapter 27. Silicon in biology and medicine Annu. Reports Med. Chem 1975 Elsevier 265 273
    • (1975) Annu. Reports Med. Chem , pp. 265-273
    • Voronkov, M.G.1
  • 37
    • 0028040890 scopus 로고
    • Effects of germanium and silicon on bone mineralization
    • C.D. Seaborn, and F.H. Nielsen Effects of germanium and silicon on bone mineralization Biol. Trace Elem. Res. 42 1994 151 164
    • (1994) Biol. Trace Elem. Res. , vol.42 , pp. 151-164
    • Seaborn, C.D.1    Nielsen, F.H.2
  • 39
    • 0036889954 scopus 로고    scopus 로고
    • Silicon deprivation decreases collagen formation in wounds and bone, and ornithine transaminase enzyme activity in liver
    • C.D. Seaborn, and F.H. Nielsen Silicon deprivation decreases collagen formation in wounds and bone, and ornithine transaminase enzyme activity in liver Biol. Trace Elem. Res. 89 2002 251 261
    • (2002) Biol. Trace Elem. Res. , vol.89 , pp. 251-261
    • Seaborn, C.D.1    Nielsen, F.H.2
  • 40
    • 0037291292 scopus 로고    scopus 로고
    • Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro
    • D.M. Reffitt, N. Ogston, R. Jugdaohsingh, H.F.J. Cheung, B.A.J. Evans, and R.P.H. Thompson Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro Bone 32 2003 127 135
    • (2003) Bone , vol.32 , pp. 127-135
    • Reffitt, D.M.1    Ogston, N.2    Jugdaohsingh, R.3    Cheung, H.F.J.4    Evans, B.A.J.5    Thompson, R.P.H.6
  • 42
    • 0026621436 scopus 로고
    • Zeolite A increases proliferation, differentiation, and transforming growth factor β production in normal adult human osteoblast-like cells in vitro
    • P.E. Keeting, M.J. Oursler, K.E. Wiegand, S.K. Bonde, T.C. Spelsberg, and B.L. Riggs Zeolite A increases proliferation, differentiation, and transforming growth factor β production in normal adult human osteoblast-like cells in vitro J. Bone Miner. Res. 7 1992 1281 1289
    • (1992) J. Bone Miner. Res. , vol.7 , pp. 1281-1289
    • Keeting, P.E.1    Oursler, M.J.2    Wiegand, K.E.3    Bonde, S.K.4    Spelsberg, T.C.5    Riggs, B.L.6
  • 44
    • 84856948011 scopus 로고    scopus 로고
    • Dietary silicon interacts with oestrogen to influence bone health: Evidence from the Aberdeen Prospective Osteoporosis Screening Study
    • H.M. Macdonald, A.C. Hardcastle, R. Jugdaohsingh, W.D. Fraser, D.M. Reid, and J.J. Powell Dietary silicon interacts with oestrogen to influence bone health: evidence from the Aberdeen Prospective Osteoporosis Screening Study Bone 50 2012 681 687
    • (2012) Bone , vol.50 , pp. 681-687
    • Macdonald, H.M.1    Hardcastle, A.C.2    Jugdaohsingh, R.3    Fraser, W.D.4    Reid, D.M.5    Powell, J.J.6
  • 45
    • 79951578643 scopus 로고    scopus 로고
    • Bioactive glass and glass-ceramic scaffolds for bone tissue engineering
    • L.-C. Gerhardt, and A.R. Boccaccini Bioactive glass and glass-ceramic scaffolds for bone tissue engineering Materials 3 2010 3867 3910
    • (2010) Materials , vol.3 , pp. 3867-3910
    • Gerhardt, L.-C.1    Boccaccini, A.R.2
  • 46
    • 34447249326 scopus 로고    scopus 로고
    • Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials
    • R.E. Unger, A. Sartoris, K. Peters, A. Motta, C. Migliaresi, and M. Kunkel Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials Biomaterials 28 2007 3965 3976
    • (2007) Biomaterials , vol.28 , pp. 3965-3976
    • Unger, R.E.1    Sartoris, A.2    Peters, K.3    Motta, A.4    Migliaresi, C.5    Kunkel, M.6
  • 47
    • 67649970521 scopus 로고    scopus 로고
    • Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol
    • M. Salarian, M. Solati-Hashjin, S.S. Shafiei, R. Salarian, and Z.A. Nemati Template-directed hydrothermal synthesis of dandelion-like hydroxyapatite in the presence of cetyltrimethylammonium bromide and polyethylene glycol Ceram. Int. 35 2009 2563 2569
    • (2009) Ceram. Int. , vol.35 , pp. 2563-2569
    • Salarian, M.1    Solati-Hashjin, M.2    Shafiei, S.S.3    Salarian, R.4    Nemati, Z.A.5
  • 48
    • 0000543880 scopus 로고
    • Bone chemistry and paleodiet
    • F.D. Pate Bone chemistry and paleodiet J. Archaeol. Method Theory 1 1994 161 209
    • (1994) J. Archaeol. Method Theory , vol.1 , pp. 161-209
    • Pate, F.D.1
  • 49
    • 0001925250 scopus 로고
    • Bone material and calcification mechanisms
    • Lippincott Philadelphia, US
    • W.F. Neuman Bone material and calcification mechanisms Fundam. Clin. Bone Physiol 1980 Lippincott Philadelphia, US 83 107
    • (1980) Fundam. Clin. Bone Physiol , pp. 83-107
    • Neuman, W.F.1
  • 50
    • 77955329472 scopus 로고    scopus 로고
    • Ionic substitutions in calcium phosphates synthesized at low temperature
    • E. Boanini, M. Gazzano, and A. Bigi Ionic substitutions in calcium phosphates synthesized at low temperature Acta Biomater. 6 2010 1882 1894
    • (2010) Acta Biomater. , vol.6 , pp. 1882-1894
    • Boanini, E.1    Gazzano, M.2    Bigi, A.3
  • 51
    • 0037428841 scopus 로고    scopus 로고
    • Hydroxyapatite layers deposited from aqueous solutions on hydrophilic silicon substrate
    • R.-J. Chung, M.-F. Hsieh, R.N. Panda, and T.-S. Chin Hydroxyapatite layers deposited from aqueous solutions on hydrophilic silicon substrate Surf. Coat. Technol. 165 2003 194 200
    • (2003) Surf. Coat. Technol. , vol.165 , pp. 194-200
    • Chung, R.-J.1    Hsieh, M.-F.2    Panda, R.N.3    Chin, T.-S.4
  • 56
    • 0037009080 scopus 로고    scopus 로고
    • Biological and medical significance of calcium phosphates
    • S.V. Dorozhkin, and M. Epple Biological and medical significance of calcium phosphates Angew. Chem. Int. Ed. 41 2002 3130 3146
    • (2002) Angew. Chem. Int. Ed. , vol.41 , pp. 3130-3146
    • Dorozhkin, S.V.1    Epple, M.2
  • 58
    • 0041386489 scopus 로고    scopus 로고
    • Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics
    • A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, and W. Bonfield Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics Biomaterials 24 2003 4609 4620
    • (2003) Biomaterials , vol.24 , pp. 4609-4620
    • Porter, A.E.1    Patel, N.2    Skepper, J.N.3    Best, S.M.4    Bonfield, W.5
  • 59
    • 18244388955 scopus 로고    scopus 로고
    • Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants
    • M. Vallet-Regí, and D. Arcos Silicon substituted hydroxyapatites. A method to upgrade calcium phosphate based implants J. Mater. Chem. 15 2005 1509 1516
    • (2005) J. Mater. Chem. , vol.15 , pp. 1509-1516
    • Vallet-Regí, M.1    Arcos, D.2
  • 60
    • 33644522084 scopus 로고    scopus 로고
    • Silicon-substituted hydroxyapatite (SiHA): A novel calcium phosphate coating for biomedical applications
    • E.S. Thian, J. Huang, M.E. Vickers, S.M. Best, Z.H. Barber, and W. Bonfield Silicon-substituted hydroxyapatite (SiHA): a novel calcium phosphate coating for biomedical applications J. Mater. Sci. 41 2006 709 717
    • (2006) J. Mater. Sci. , vol.41 , pp. 709-717
    • Thian, E.S.1    Huang, J.2    Vickers, M.E.3    Best, S.M.4    Barber, Z.H.5    Bonfield, W.6
  • 61
    • 80053584212 scopus 로고    scopus 로고
    • Study of physicochemical and biological properties of calcium phosphate coatings prepared by RF magnetron sputtering of silicon-substituted hydroxyapatite
    • V.F. Pichugin, M.A. Surmeneva, R.A. Surmenev, I.A. Khlusov, and M. Epple Study of physicochemical and biological properties of calcium phosphate coatings prepared by RF magnetron sputtering of silicon-substituted hydroxyapatite J. Surf. Investig. X-Ray Synchrotron Neutron Tech. 5 2011 863 869
    • (2011) J. Surf. Investig. X-Ray Synchrotron Neutron Tech. , vol.5 , pp. 863-869
    • Pichugin, V.F.1    Surmeneva, M.A.2    Surmenev, R.A.3    Khlusov, I.A.4    Epple, M.5
  • 62
    • 0036978429 scopus 로고    scopus 로고
    • A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules
    • N. Patel, S.M. Best, W. Bonfield, I.R. Gibson, K.A. Hing, and E. Damien A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules J. Mater. Sci. Mater. Med. 13 2002 1199 1206
    • (2002) J. Mater. Sci. Mater. Med. , vol.13 , pp. 1199-1206
    • Patel, N.1    Best, S.M.2    Bonfield, W.3    Gibson, I.R.4    Hing, K.A.5    Damien, E.6
  • 63
    • 0000802084 scopus 로고    scopus 로고
    • Enhanced in vitro cell activity and surface apatite layer formation on novel silicon-substituted hydroxyapatites
    • H. Ohgushi, G.W. Hast, T. Yoshikawa, World Scientific Nara, Japan
    • I.R. Gibson, J. Huang, S.M. Best, and W. Bonfield Enhanced in vitro cell activity and surface apatite layer formation on novel silicon-substituted hydroxyapatites H. Ohgushi, G.W. Hast, T. Yoshikawa, Proc. 12th Int. Symp. Ceram. Med 2009 World Scientific Nara, Japan 191 194
    • (2009) Proc. 12th Int. Symp. Ceram. Med , pp. 191-194
    • Gibson, I.R.1    Huang, J.2    Best, S.M.3    Bonfield, W.4
  • 65
    • 33748188416 scopus 로고    scopus 로고
    • Differentiation of mononuclear precursors into osteoclasts on the surface of Si-substituted hydroxyapatite
    • C.M. Botelho, R.A. Brooks, G. Spence, I. McFarlane, M.A. Lopes, and S.M. Best Differentiation of mononuclear precursors into osteoclasts on the surface of Si-substituted hydroxyapatite J. Biomed. Mater. Res. A 78 2006 709 720
    • (2006) J. Biomed. Mater. Res. A , vol.78 , pp. 709-720
    • Botelho, C.M.1    Brooks, R.A.2    Spence, G.3    McFarlane, I.4    Lopes, M.A.5    Best, S.M.6
  • 67
    • 77957369044 scopus 로고    scopus 로고
    • Efficacy of silicate-substituted calcium phosphate ceramic in posterolateral instrumented lumbar fusion
    • L.G. Jenis, and R.J. Banco Efficacy of silicate-substituted calcium phosphate ceramic in posterolateral instrumented lumbar fusion Spine 35 2010 E1058 E1063
    • (2010) Spine , vol.35
    • Jenis, L.G.1    Banco, R.J.2
  • 68
    • 37349129191 scopus 로고    scopus 로고
    • Synthesis of Si-substituted hydroxyapatite by a wet mechanochemical method
    • T. Tian, D. Jiang, J. Zhang, and Q. Lin Synthesis of Si-substituted hydroxyapatite by a wet mechanochemical method Mater. Sci. Eng. C 28 2008 57 63
    • (2008) Mater. Sci. Eng. C , vol.28 , pp. 57-63
    • Tian, T.1    Jiang, D.2    Zhang, J.3    Lin, Q.4
  • 71
    • 0346949028 scopus 로고    scopus 로고
    • Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors
    • S.R. Kim, J.H. Lee, Y.T. Kim, D.H. Riu, S.J. Jung, and Y.J. Lee Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors Biomaterials 24 2003 1389 1398
    • (2003) Biomaterials , vol.24 , pp. 1389-1398
    • Kim, S.R.1    Lee, J.H.2    Kim, Y.T.3    Riu, D.H.4    Jung, S.J.5    Lee, Y.J.6
  • 73
    • 33746995094 scopus 로고    scopus 로고
    • Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds
    • K.A. Hing, P.A. Revell, N. Smith, and T. Buckland Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds Biomaterials 27 2006 5014 5026
    • (2006) Biomaterials , vol.27 , pp. 5014-5026
    • Hing, K.A.1    Revell, P.A.2    Smith, N.3    Buckland, T.4
  • 74
    • 84871454198 scopus 로고    scopus 로고
    • Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route
    • M. Honda, K. Kikushima, Y. Kawanobe, T. Konishi, M. Mizumoto, and M. Aizawa Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route J. Mater. Sci. Mater. Med. 23 2012 2923 2932
    • (2012) J. Mater. Sci. Mater. Med. , vol.23 , pp. 2923-2932
    • Honda, M.1    Kikushima, K.2    Kawanobe, Y.3    Konishi, T.4    Mizumoto, M.5    Aizawa, M.6
  • 75
    • 84864746472 scopus 로고    scopus 로고
    • Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites
    • G. Lehmann, I. Cacciotti, P. Palmero, L. Montanaro, A. Bianco, and L. Campagnolo Differentiation of osteoblast and osteoclast precursors on pure and silicon-substituted synthesized hydroxyapatites Biomed. Mater. 7 2012 055001
    • (2012) Biomed. Mater. , vol.7 , pp. 055001
    • Lehmann, G.1    Cacciotti, I.2    Palmero, P.3    Montanaro, L.4    Bianco, A.5    Campagnolo, L.6
  • 76
    • 84870242564 scopus 로고    scopus 로고
    • Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles
    • S. Hayakawa, T. Kanaya, K. Tsuru, Y. Shirosaki, A. Osaka, and E. Fujii Heterogeneous structure and in vitro degradation behavior of wet-chemically derived nanocrystalline silicon-containing hydroxyapatite particles Acta Biomater. 9 2013 4856 4867
    • (2013) Acta Biomater. , vol.9 , pp. 4856-4867
    • Hayakawa, S.1    Kanaya, T.2    Tsuru, K.3    Shirosaki, Y.4    Osaka, A.5    Fujii, E.6
  • 77
    • 84882975325 scopus 로고    scopus 로고
    • Silicate-substituted calcium phosphate as a bone graft substitute in surgery for adolescent idiopathic scoliosis
    • T. Lerner, and U. Liljenqvist Silicate-substituted calcium phosphate as a bone graft substitute in surgery for adolescent idiopathic scoliosis Eur. Spine J. 22 2012 185 194
    • (2012) Eur. Spine J. , vol.22 , pp. 185-194
    • Lerner, T.1    Liljenqvist, U.2
  • 78
    • 84875742130 scopus 로고    scopus 로고
    • In vitro surface biocompatibility of high-content silicon-substituted calcium phosphate ceramics
    • N.Y. Mostafa, A.A. Shaltout, L. Radev, and H.M. Hassan In vitro surface biocompatibility of high-content silicon-substituted calcium phosphate ceramics Cent. Eur. J. Chem. 11 2012 140 150
    • (2012) Cent. Eur. J. Chem. , vol.11 , pp. 140-150
    • Mostafa, N.Y.1    Shaltout, A.A.2    Radev, L.3    Hassan, H.M.4
  • 79
    • 84866534141 scopus 로고    scopus 로고
    • Silicate-substituted calcium phosphate ceramic bone graft replacement for spinal fusion procedures
    • V.V. Nagineni, A.R. James, M. Alimi, C. Hofstetter, B.J. Shin, and I. Njoku Silicate-substituted calcium phosphate ceramic bone graft replacement for spinal fusion procedures Spine 37 2012 E1264 E1272
    • (2012) Spine , vol.37
    • Nagineni, V.V.1    James, A.R.2    Alimi, M.3    Hofstetter, C.4    Shin, B.J.5    Njoku, I.6
  • 81
    • 70249128256 scopus 로고    scopus 로고
    • Silicon-substituted calcium phosphates - A critical view
    • M. Bohner Silicon-substituted calcium phosphates - a critical view Biomaterials 30 2009 6403 6406
    • (2009) Biomaterials , vol.30 , pp. 6403-6406
    • Bohner, M.1
  • 83
    • 0020391026 scopus 로고
    • Tricalcium phosphate ceramic - A resorbable bone implant: Review and current status
    • D.S. Metsger, T.D. Driskell, and J.R. Paulsrud Tricalcium phosphate ceramic - a resorbable bone implant: review and current status J. Am. Dent. Assoc. 105 1982 1035 1038
    • (1982) J. Am. Dent. Assoc. , vol.105 , pp. 1035-1038
    • Metsger, D.S.1    Driskell, T.D.2    Paulsrud, J.R.3
  • 84
    • 0021186515 scopus 로고
    • [Beta]-Tricalcium phosphate delivery system for bone morphogenetic proteins
    • M.R. Urist, A. Lietze, and E. Dawson [beta]-Tricalcium phosphate delivery system for bone morphogenetic proteins Clin. Orthop. 187 1984 277 280
    • (1984) Clin. Orthop. , vol.187 , pp. 277-280
    • Urist, M.R.1    Lietze, A.2    Dawson, E.3
  • 85
    • 0023234146 scopus 로고
    • Hydroxyapatite and tricalcium phosphate bone graft substitutes
    • R.W. Bucholz, A. Carlton, and R.E. Holmes Hydroxyapatite and tricalcium phosphate bone graft substitutes Orthop. Clin. North Am. 18 1987 323 334
    • (1987) Orthop. Clin. North Am. , vol.18 , pp. 323-334
    • Bucholz, R.W.1    Carlton, A.2    Holmes, R.E.3
  • 87
    • 80052271893 scopus 로고    scopus 로고
    • α-Tricalcium phosphate: Synthesis, properties and biomedical applications
    • R.G. Carrodeguas, and S. De Aza α-Tricalcium phosphate: synthesis, properties and biomedical applications Acta Biomater. 7 2011 3536 3546
    • (2011) Acta Biomater. , vol.7 , pp. 3536-3546
    • Carrodeguas, R.G.1    De Aza, S.2
  • 88
    • 0025343121 scopus 로고
    • Calcium phosphate cements: Study of the β-Tricalcium phosphate - Dicalcium phosphate - Calcite cements
    • A.A. Mirtchi, J. Lemaître, and E. Munting Calcium phosphate cements: study of the β-Tricalcium phosphate - dicalcium phosphate - calcite cements Biomaterials 11 1990 83 88
    • (1990) Biomaterials , vol.11 , pp. 83-88
    • Mirtchi, A.A.1    Lemaître, J.2    Munting, E.3
  • 89
    • 0035869771 scopus 로고    scopus 로고
    • Preparation and compressive strength of alpha-tricalcium phosphate/gelatin gel composite cement
    • Y. Fujishiro, K. Takahashi, and T. Sato Preparation and compressive strength of alpha-tricalcium phosphate/gelatin gel composite cement J. Biomed. Mater. Res. 54 2001 525 530
    • (2001) J. Biomed. Mater. Res. , vol.54 , pp. 525-530
    • Fujishiro, Y.1    Takahashi, K.2    Sato, T.3
  • 90
    • 77951604970 scopus 로고    scopus 로고
    • β-Tricalcium phosphate in the early phase of socket healing: An experimental study in the dog
    • M.G. Araújo, B. Liljenberg, and J. Lindhe β-tricalcium phosphate in the early phase of socket healing: an experimental study in the dog Clin. Oral Implants Res. 21 2010 445 454
    • (2010) Clin. Oral Implants Res. , vol.21 , pp. 445-454
    • Araújo, M.G.1    Liljenberg, B.2    Lindhe, J.3
  • 91
    • 84856549565 scopus 로고    scopus 로고
    • Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: Characterization and cell response
    • G. Mestres, C. Le Van, and M.-P. Ginebra Silicon-stabilized α-tricalcium phosphate and its use in a calcium phosphate cement: characterization and cell response Acta Biomater. 8 2012 1169 1179
    • (2012) Acta Biomater. , vol.8 , pp. 1169-1179
    • Mestres, G.1    Van, L.C.2    Ginebra, M.-P.3
  • 92
    • 2942744545 scopus 로고    scopus 로고
    • Microstructure and bioresorbable properties of α-TCP ceramic porous body fabricated by direct casting method
    • M. Kitamura, C. Ohtsuki, S.-I. Ogata, M. Kamitakahara, and M. Tanihara Microstructure and bioresorbable properties of α-TCP ceramic porous body fabricated by direct casting method Mater. Trans. JIM 45 2004 983 988
    • (2004) Mater. Trans. JIM , vol.45 , pp. 983-988
    • Kitamura, M.1    Ohtsuki, C.2    Ogata, S.-I.3    Kamitakahara, M.4    Tanihara, M.5
  • 95
    • 0030268772 scopus 로고    scopus 로고
    • Structural analysis of new crystal phase for calcium phosphate in αl â†" α″ phase transition
    • L. Ruan, X. Wang, and L. Li Structural analysis of new crystal phase for calcium phosphate in αL â†" α″ phase transition Mater. Res. Bull. 31 1996 1207 1212
    • (1996) Mater. Res. Bull. , vol.31 , pp. 1207-1212
    • Ruan, L.1    Wang, X.2    Li, L.3
  • 96
    • 79952414398 scopus 로고    scopus 로고
    • Bioactive ceramic composite materials in hydroxyapatite-tricalcium phosphate system
    • O.L. Kubarev, V.S. Komlev, and S.M. Barinov Bioactive ceramic composite materials in hydroxyapatite-tricalcium phosphate system Inorg. Mater. Appl. Res. 1 2010 182 187
    • (2010) Inorg. Mater. Appl. Res. , vol.1 , pp. 182-187
    • Kubarev, O.L.1    Komlev, V.S.2    Barinov, S.M.3
  • 97
    • 77953221439 scopus 로고    scopus 로고
    • Enhanced bone bonding of the hydroxyapatite/β-tricalcium phosphate composite by electrical polarization in rabbit long bone
    • H. Sagawa, S. Itoh, W. Wang, and K. Yamashita Enhanced bone bonding of the hydroxyapatite/β-tricalcium phosphate composite by electrical polarization in rabbit long bone Artif. Organs 34 2010 491 497
    • (2010) Artif. Organs , vol.34 , pp. 491-497
    • Sagawa, H.1    Itoh, S.2    Wang, W.3    Yamashita, K.4
  • 98
    • 84859568511 scopus 로고    scopus 로고
    • In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder
    • C.-C. Wu, K.-C. Yang, S.-H. Yang, M.-H. Lin, T.-F. Kuo, and F.-H. Lin In vitro studies of composite bone filler based on poly(propylene fumarate) and biphasic α-tricalcium phosphate/hydroxyapatite ceramic powder Artif. Organs 36 2012 418 428
    • (2012) Artif. Organs , vol.36 , pp. 418-428
    • Wu, C.-C.1    Yang, K.-C.2    Yang, S.-H.3    Lin, M.-H.4    Kuo, T.-F.5    Lin, F.-H.6
  • 99
    • 84855166904 scopus 로고    scopus 로고
    • The influence of silicon substitution on the properties of spherical- and whisker-like biphasic α-calcium-phosphate/hydroxyapatite particles
    • B. Jokic, M. Mitric, M. Popovic, L. Sima, S.M. Petrescu, and R. Petrovic The influence of silicon substitution on the properties of spherical- and whisker-like biphasic α-calcium-phosphate/hydroxyapatite particles J. Mater. Sci. Mater. Med. 22 2011 2175 2185
    • (2011) J. Mater. Sci. Mater. Med. , vol.22 , pp. 2175-2185
    • Jokic, B.1    Mitric, M.2    Popovic, M.3    Sima, L.4    Petrescu, S.M.5    Petrovic, R.6
  • 100
    • 84555217822 scopus 로고    scopus 로고
    • Si-tricalcium phosphate cement: Preparation, characterization and bioactivity in SBF
    • M. Motisuke, R.G. Carrodeguas, and C.A. de C. Zavaglia Si-tricalcium phosphate cement: preparation, characterization and bioactivity in SBF Mater. Res. 14 2011 493 498
    • (2011) Mater. Res. , vol.14 , pp. 493-498
    • Motisuke, M.1    Carrodeguas, R.G.2    Zavaglia, C.A.D.C.3
  • 101
    • 79751536752 scopus 로고    scopus 로고
    • Processing, physico-chemical characterisation and in vitro evaluation of silicon containing β-tricalcium phosphate ceramics
    • N. Douard, R. Detsch, R. Chotard-Ghodsnia, C. Damia, U. Deisinger, and E. Champion Processing, physico-chemical characterisation and in vitro evaluation of silicon containing β-tricalcium phosphate ceramics Mater. Sci. Eng. C 31 2011 531 539
    • (2011) Mater. Sci. Eng. C , vol.31 , pp. 531-539
    • Douard, N.1    Detsch, R.2    Chotard-Ghodsnia, R.3    Damia, C.4    Deisinger, U.5    Champion, E.6
  • 102
    • 81155123623 scopus 로고    scopus 로고
    • In situ synthesis of silicon-substituted biphasic calcium phosphate and their performance in vitro
    • C.-W. Song, T.-W. Kim, D.-H. Kim, H.-H. Jin, K.-H. Hwang, and J.K. Lee In situ synthesis of silicon-substituted biphasic calcium phosphate and their performance in vitro J. Phys. Chem. Solids 73 2012 39 45
    • (2012) J. Phys. Chem. Solids , vol.73 , pp. 39-45
    • Song, C.-W.1    Kim, T.-W.2    Kim, D.-H.3    Jin, H.-H.4    Hwang, K.-H.5    Lee, J.K.6
  • 103
  • 107
    • 33746886291 scopus 로고    scopus 로고
    • Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition
    • A.E. Porter Nanoscale characterization of the interface between bone and hydroxyapatite implants and the effect of silicon on bone apposition Micron 37 2006 681 688
    • (2006) Micron , vol.37 , pp. 681-688
    • Porter, A.E.1
  • 108
    • 0027458438 scopus 로고
    • The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I: Dissolution
    • P. Ducheyne, S. Radin, and L. King The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I: dissolution J. Biomed. Mater. Res. 27 1993 25 34
    • (1993) J. Biomed. Mater. Res. , vol.27 , pp. 25-34
    • Ducheyne, P.1    Radin, S.2    King, L.3
  • 109
    • 0027530513 scopus 로고
    • The effect of calcium phosphate ceramic composition and structure on in vitro behavior. II: Precipitation
    • S.R. Radin, and P. Ducheyne The effect of calcium phosphate ceramic composition and structure on in vitro behavior. II: precipitation J. Biomed. Mater. Res. 27 1993 35 45
    • (1993) J. Biomed. Mater. Res. , vol.27 , pp. 35-45
    • Radin, S.R.1    Ducheyne, P.2
  • 110
    • 0343247725 scopus 로고    scopus 로고
    • Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid
    • J. Weng, Q. Liu, J.G.C. Wolke, X. Zhang, and K. de Groot Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid Biomaterials 18 1997 1027 1035
    • (1997) Biomaterials , vol.18 , pp. 1027-1035
    • Weng, J.1    Liu, Q.2    Wolke, J.G.C.3    Zhang, X.4    De Groot, K.5
  • 111
    • 0017365913 scopus 로고
    • Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface
    • M. Jarcho, J.F. Kay, K.I. Gumaer, R.H. Doremus, and H.P. Drobeck Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface J. Bioeng. 1 1977 79 92
    • (1977) J. Bioeng. , vol.1 , pp. 79-92
    • Jarcho, M.1    Kay, J.F.2    Gumaer, K.I.3    Doremus, R.H.4    Drobeck, H.P.5
  • 112
    • 0025388866 scopus 로고
    • The influence of calcium phosphate biomaterials on human bone cell activities. An in vitro approach
    • M. Grégoire, I. Orly, and J. Menanteau The influence of calcium phosphate biomaterials on human bone cell activities. An in vitro approach J. Biomed. Mater. Res. 24 1990 165 177
    • (1990) J. Biomed. Mater. Res. , vol.24 , pp. 165-177
    • Grégoire, M.1    Orly, I.2    Menanteau, J.3
  • 113
    • 0033335854 scopus 로고    scopus 로고
    • Mechanism of apatite formation on a sodium silicate glass in a simulated body fluid
    • S. Hayakawa, K. Tsuru, C. Ohtsuki, and A. Osaka Mechanism of apatite formation on a sodium silicate glass in a simulated body fluid J. Am. Ceram. Soc. 82 1999 2155 2160
    • (1999) J. Am. Ceram. Soc. , vol.82 , pp. 2155-2160
    • Hayakawa, S.1    Tsuru, K.2    Ohtsuki, C.3    Osaka, A.4
  • 114
    • 0032723976 scopus 로고    scopus 로고
    • Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function
    • P. Ducheyne Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function Biomaterials 20 1999 2287 2303
    • (1999) Biomaterials , vol.20 , pp. 2287-2303
    • Ducheyne, P.1
  • 115
    • 0036132131 scopus 로고    scopus 로고
    • The ultrastructure of the plasma-sprayed hydroxyapatite-bone interface predisposing to bone bonding
    • A.E. Porter, L.W. Hobbs, V.B. Rosen, and M. Spector The ultrastructure of the plasma-sprayed hydroxyapatite-bone interface predisposing to bone bonding Biomaterials 23 2002 725 733
    • (2002) Biomaterials , vol.23 , pp. 725-733
    • Porter, A.E.1    Hobbs, L.W.2    Rosen, V.B.3    Spector, M.4
  • 116
    • 0242606483 scopus 로고    scopus 로고
    • Ultrastructure of ceramic-bone interface using hydroxyapatite and β-tricalcium phosphate ceramics and replacement mechanism of β-tricalcium phosphate in bone
    • R. Fujita, A. Yokoyama, Y. Nodasaka, T. Kohgo, and T. Kawasaki Ultrastructure of ceramic-bone interface using hydroxyapatite and β-tricalcium phosphate ceramics and replacement mechanism of β-tricalcium phosphate in bone Tissue Cell 35 2003 427 440
    • (2003) Tissue Cell , vol.35 , pp. 427-440
    • Fujita, R.1    Yokoyama, A.2    Nodasaka, Y.3    Kohgo, T.4    Kawasaki, T.5
  • 118
    • 0032152122 scopus 로고    scopus 로고
    • Mechanisms of endosseous integration
    • J.E. Davies Mechanisms of endosseous integration Int. J. Prosthodont. 11 1998 391 401
    • (1998) Int. J. Prosthodont. , vol.11 , pp. 391-401
    • Davies, J.E.1
  • 119
    • 1242317754 scopus 로고    scopus 로고
    • Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone-implant interface
    • A.E. Porter, N. Patel, J.N. Skepper, S.M. Best, and W. Bonfield Effect of sintered silicate-substituted hydroxyapatite on remodelling processes at the bone-implant interface Biomaterials 25 2004 3303 3314
    • (2004) Biomaterials , vol.25 , pp. 3303-3314
    • Porter, A.E.1    Patel, N.2    Skepper, J.N.3    Best, S.M.4    Bonfield, W.5
  • 121
    • 33745778926 scopus 로고    scopus 로고
    • Reconstruction of extensive long bone defects in sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate
    • M. Mastrogiacomo, A. Corsi, E. Francioso, M.D. Comite, F. Monetti, and S. Scaglione Reconstruction of extensive long bone defects in sheep using resorbable bioceramics based on silicon stabilized tricalcium phosphate Tissue Eng. 12 2006 1261 1273
    • (2006) Tissue Eng. , vol.12 , pp. 1261-1273
    • Mastrogiacomo, M.1    Corsi, A.2    Francioso, E.3    Comite, M.D.4    Monetti, F.5    Scaglione, S.6
  • 122
    • 24044546170 scopus 로고    scopus 로고
    • Functional atomic force microscopy investigation of osteopontin affinity for silicon stabilized tricalcium phosphate bioceramic surfaces
    • A.M. Pietak, and M. Sayer Functional atomic force microscopy investigation of osteopontin affinity for silicon stabilized tricalcium phosphate bioceramic surfaces Biomaterials 27 2006 3 14
    • (2006) Biomaterials , vol.27 , pp. 3-14
    • Pietak, A.M.1    Sayer, M.2
  • 123
    • 0035864263 scopus 로고    scopus 로고
    • Resorbable bioceramics based on stabilized calcium phosphates. Part II: Evaluation of biological response
    • S. Langstaff, M. Sayer, T.J. Smith, and S.M. Pugh Resorbable bioceramics based on stabilized calcium phosphates. Part II: evaluation of biological response Biomaterials 22 2001 135 150
    • (2001) Biomaterials , vol.22 , pp. 135-150
    • Langstaff, S.1    Sayer, M.2    Smith, T.J.3    Pugh, S.M.4
  • 124
    • 2942558665 scopus 로고    scopus 로고
    • Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo
    • A.E. Porter, C.M. Botelho, M.A. Lopes, J.D. Santos, S.M. Best, and W. Bonfield Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatite in vitro and in vivo J. Biomed. Mater. Res. 69A 2004 670 679
    • (2004) J. Biomed. Mater. Res. , vol.69 A , pp. 670-679
    • Porter, A.E.1    Botelho, C.M.2    Lopes, M.A.3    Santos, J.D.4    Best, S.M.5    Bonfield, W.6
  • 126
    • 34447257190 scopus 로고    scopus 로고
    • Silicon substitution in the calcium phosphate bioceramics
    • A.M. Pietak, J.W. Reid, M.J. Stott, and M. Sayer Silicon substitution in the calcium phosphate bioceramics Biomaterials 28 2007 4023 4032
    • (2007) Biomaterials , vol.28 , pp. 4023-4032
    • Pietak, A.M.1    Reid, J.W.2    Stott, M.J.3    Sayer, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.