-
1
-
-
0031640270
-
Recommendation as classification: Using social and content-based information in recommendation
-
Madison, Wis, USA
-
C. Basu, H. Hirsh, and W. W. Cohen. Recommendation as classification: Using social and content-based information in recommendation. In Proceedings of the 15th National Conference on Artificial Intelligence, pages 714-720, Madison, Wis, USA, 1998.
-
(1998)
Proceedings of the 15th National Conference on Artificial Intelligence
, pp. 714-720
-
-
Basu, C.1
Hirsh, H.2
Cohen, W.W.3
-
2
-
-
0002731035
-
Learning collaborative information filters
-
Madison, Wisconson, USA
-
D. Billsus and M. J. Pazzani. Learning collaborative information filters. In Proceedings of the 15th International Conference on Machine Learning, pages 46-54, Madison, Wisconson, USA, 1998.
-
(1998)
Proceedings of the 15th International Conference on Machine Learning
, pp. 46-54
-
-
Billsus, D.1
Pazzani, M.J.2
-
3
-
-
33750717265
-
Active collaborative filtering
-
San Francisco, CA
-
C. Boutilier, R. Zemel, and B. Marlin. Active collaborative filtering. In Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, pages 98-106, San Francisco, CA, 2003.
-
(2003)
Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence
, pp. 98-106
-
-
Boutilier, C.1
Zemel, R.2
Marlin, B.3
-
4
-
-
0002051628
-
Empirical analysis of predictive algorithms for collaborative filtering
-
Madison, WI
-
J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, pages 43-52, Madison, WI, 1998.
-
(1998)
Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence
, pp. 43-52
-
-
Breese, J.1
Heckerman, D.2
Kadie, C.3
-
5
-
-
33749236093
-
Collaborative prediction using ensembles of maximum margin matrix factorizations
-
Pittsburgh, Pennsylvania, USA
-
D. DeCoste. Collaborative prediction using ensembles of maximum margin matrix factorizations. In Proceedings of the 23rd International Conference on Machine Learning, pages 249-256, Pittsburgh, Pennsylvania, USA, 2006.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning
, pp. 249-256
-
-
Decoste, D.1
-
6
-
-
0034853839
-
A rank minimization heuristic with application to minimum order system approximation
-
M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with application to minimum order system approximation. In Proceedings American Control Conference, pages 4734-4739, 2001. (Pubitemid 32837075)
-
(2001)
Proceedings of the American Control Conference
, vol.6
, pp. 4734-4739
-
-
Fazel, M.1
Hindi, H.2
Boyd, S.P.3
-
7
-
-
0142215333
-
Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices
-
M. Fazel, H. Hindi, and S. Boyd. Log-det heuristic for matrix rank minimization with applications to hankel and euclidean distance matrices. In Proceedings American Control Conference, pages 2156-2162, 2003.
-
(2003)
Proceedings American Control Conference
, pp. 2156-2162
-
-
Fazel, M.1
Hindi, H.2
Boyd, S.3
-
9
-
-
0013245909
-
Dependency networks for collaborative filtering and data visualization
-
Stanford University, Stanford, California, USA
-
D. Heckerman, D. Chickering, C. Meek, R. Rounthwaite, and C. Kadie. Dependency networks for collaborative filtering and data visualization. In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages 264-273, Stanford University, Stanford, California, USA, 2000.
-
(2000)
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence
, pp. 264-273
-
-
Heckerman, D.1
Chickering, D.2
Meek, C.3
Rounthwaite, R.4
Kadie, C.5
-
10
-
-
85015559680
-
An algorithmic framework for performing collaborative filtering
-
Berkeley, CA, USA
-
J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 230-237, Berkeley, CA, USA, 1999.
-
(1999)
Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 230-237
-
-
Herlocker, J.L.1
Konstan, J.A.2
Borchers, A.3
Riedl, J.4
-
11
-
-
29244479602
-
Preference-based graphic models for collaborative filtering
-
Acapulco, Mexico
-
R. Jin, L. Si, and C. Zhai. Preference-based graphic models for collaborative filtering. In Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence, pages 329-336, Acapulco, Mexico, 2003.
-
(2003)
Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence
, pp. 329-336
-
-
Jin, R.1
Si, L.2
Zhai, C.3
-
14
-
-
71149119166
-
Non-linear matrix factorization with gaussian processes
-
Montreal, Quebec, Canada
-
N. D. Lawrence and R. Urtasun. Non-linear matrix factorization with gaussian processes. In Proceedings of the 26th International Conference on Machine Learning, pages 601- 608, Montreal, Quebec, Canada, 2009.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning
, pp. 601-608
-
-
Lawrence, N.D.1
Urtasun, R.2
-
15
-
-
70549113873
-
Transfer learning for collaborative filtering via a rating-matrix generative model
-
Montreal, Quebec, Canada
-
B. Li, Q. Yang, and X. Xue. Transfer learning for collaborative filtering via a rating-matrix generative model. In Proceedings of the 26th International Conference on Machine Learning, pages 617-624, Montreal, Quebec, Canada, 2009.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning
, pp. 617-624
-
-
Li, B.1
Yang, Q.2
Xue, X.3
-
17
-
-
0036932094
-
Contentboosted collaborative filtering for improved recommendations
-
Edmonton, Alberta, Canada
-
P. Melville, R. J. Mooney, and R. Nagarajan. Contentboosted collaborative filtering for improved recommendations. In Proceedings of the 8th National Conference on Artificial intelligence, pages 187-192, Edmonton, Alberta, Canada, 2002.
-
(2002)
Proceedings of the 8th National Conference on Artificial Intelligence
, pp. 187-192
-
-
Melville, P.1
Mooney, R.J.2
Nagarajan, R.3
-
18
-
-
0001391984
-
Collaborative filtering by personality diagnosis: A hybrid memoryand model-based approach
-
Stanford University, Stanford, California, USA
-
D. Pennock, E. Horvitz, S. Lawrence, and C. Giles. Collaborative filtering by personality diagnosis: A hybrid memoryand model-based approach. In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages 473- 480, Stanford University, Stanford, California, USA, 2000.
-
(2000)
Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence
, pp. 473-480
-
-
Pennock, D.1
Horvitz, E.2
Lawrence, S.3
Giles, C.4
-
19
-
-
0012253296
-
Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments
-
University of Washington, Seattle, Washington, USA
-
A. Popescul, L. Ungar, D. Pennock, and S. Lawrence. Probabilistic models for unified collaborative and content-based recommendation in sparse-data environments. In Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pages 437-444, University of Washington, Seattle, Washington, USA, 2001.
-
(2001)
Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence
, pp. 437-444
-
-
Popescul, A.1
Ungar, L.2
Pennock, D.3
Lawrence, S.4
-
21
-
-
48349135120
-
Probabilistic matrix factorization, Vancouver, British Columbia, Canada
-
J C. Platt, D. Koller, Y. Singer, and S. Roweis, editors
-
R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1257-1264, Vancouver, British Columbia, Canada, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1257-1264
-
-
Salakhutdinov, R.1
Mnih, A.2
-
23
-
-
85052617391
-
Itembased collaborative filtering recommendation algorithms
-
Hong Kong
-
B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Itembased collaborative filtering recommendation algorithms. In Proceedings of the 10th International World Wide Web Conference, pages 285-295, Hong Kong, 2001.
-
(2001)
Proceedings of the 10th International World Wide Web Conference
, pp. 285-295
-
-
Sarwar, B.M.1
Karypis, G.2
Konstan, J.A.3
Riedl, J.4
-
24
-
-
65449121541
-
Relational learning via collective matrix factorization
-
Las Vegas, Nevada, USA
-
A. P. Singh and G. J. Gordon. Relational learning via collective matrix factorization. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 650-658, Las Vegas, Nevada, USA, 2008.
-
(2008)
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 650-658
-
-
Singh, A.P.1
Gordon, G.J.2
-
25
-
-
84898932317
-
Maximummargin matrix factorization
-
L. K. Saul, Y. Weiss, and L. Bottou, editors, Vancouver, British Columbia, Canada
-
N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximummargin matrix factorization. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems 17, pages 1329-1336, Vancouver, British Columbia, Canada, 2005.
-
(2005)
Advances in Neural Information Processing Systems
, vol.17
, pp. 1329-1336
-
-
Srebro, N.1
Rennie, J.D.M.2
Jaakkola, T.S.3
-
28
-
-
80053145987
-
Ordinal boltzmann machines for collaborative filtering
-
Corvallis, Oregon
-
T. Truyen, D. Phung, and S. Venkatesh. Ordinal boltzmann machines for collaborative filtering. In Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pages 548-556, Corvallis, Oregon, 2009.
-
(2009)
Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence
, pp. 548-556
-
-
Truyen, T.1
Phung, D.2
Venkatesh, S.3
-
29
-
-
71149088913
-
Large-scale collaborative prediction using a nonparametric random effects model
-
Montreal, Quebec, Canada
-
K. Yu, J. D. Lafferty, S. Zhu, and Y. Gong. Large-scale collaborative prediction using a nonparametric random effects model. In Proceedings of the 26th International Conference on Machine Learning, pages 1185-1192, Montreal, Quebec, Canada, 2009.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning
, pp. 1185-1192
-
-
Yu, K.1
Lafferty, J.D.2
Zhu, S.3
Gong, Y.4
-
30
-
-
2342586046
-
Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical bayes
-
Acapulco, Mexico
-
K. Yu, A. Schwaighofer, V. Tresp, W.-Y. Ma, and H. Zhang. Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical bayes. In Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence, pages 616-623, Acapulco, Mexico, 2003.
-
(2003)
Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence
, pp. 616-623
-
-
Yu, K.1
Schwaighofer, A.2
Tresp, V.3
Ma, W.-Y.4
Zhang, H.5
-
31
-
-
0742286175
-
Probabilistic memory-based collaborative filtering
-
K. Yu, A. Schwaighofer, V. Tresp, X. Xu, and H.-P. Kriegel. Probabilistic memory-based collaborative filtering. IEEE Transactions on Knowledge and Data Engeering, 16(1):56-69, 2004.
-
(2004)
IEEE Transactions on Knowledge and Data Engeering
, vol.16
, Issue.1
, pp. 56-69
-
-
Yu, K.1
Schwaighofer, A.2
Tresp, V.3
Xu, X.4
Kriegel, H.-P.5
-
32
-
-
72449152230
-
Fast nonparametric matrix factorization for large-scale collaborative filtering
-
Boston, MA, USA
-
K. Yu, S. Zhu, J. D. Lafferty, and Y. Gong. Fast nonparametric matrix factorization for large-scale collaborative filtering. In Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 211-218, Boston, MA, USA, 2009.
-
(2009)
Proceedings of the 32nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 211-218
-
-
Yu, K.1
Zhu, S.2
Lafferty, J.D.3
Gong, Y.4
|