메뉴 건너뛰기




Volumn 16, Issue 1, 2004, Pages 56-69

Probabilistic Memory-Based Collaborative Filtering

Author keywords

Active learning; Collaborative filtering; Data sampling; Profile density model; Recommender systems

Indexed keywords

ACTIVE LEARNING; COLLABORATIVE FILTERING; DATA SAMPLING; PROFILE DENSITY MODEL; RECOMMENDER SYSTEMS;

EID: 0742286175     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2004.1264822     Document Type: Article
Times cited : (235)

References (33)
  • 2
    • 0031103679 scopus 로고    scopus 로고
    • Fab: Content-Based, Collaborative Recommendation
    • M. Balabanovic and Y. Shoham, "Fab: Content-Based, Collaborative Recommendation," Comm. ACM., vol. 40, no. 3, pp. 66-72, 1997.
    • (1997) Comm. ACM. , vol.40 , Issue.3 , pp. 66-72
    • Balabanovic, M.1    Shoham, Y.2
  • 3
    • 0033653019 scopus 로고    scopus 로고
    • Content-Based Book Recommending Using Learning for Text Categorization
    • R.J. Mooney and L. Roy, "Content-Based Book Recommending Using Learning for Text Categorization," Proc. Fifth ACM Conf. Digital Libaries, pp. 195-204, 2000.
    • (2000) Proc. Fifth ACM Conf. Digital Libaries , pp. 195-204
    • Mooney, R.J.1    Roy, L.2
  • 9
    • 0005104313 scopus 로고    scopus 로고
    • Jump-Starting Movielens: User Benefits of Starting a Collaborative Filtering System with Dead Data
    • Univ. of Minnesota
    • B.J. Dahlen, J.A. Konstan, J.L. Herlocker, and J. Riedl, "Jump-Starting Movielens: User Benefits of Starting a Collaborative Filtering System with Dead Data," Technical Report 7, Univ. of Minnesota, 1998.
    • (1998) Technical Report , vol.7
    • Dahlen, B.J.1    Konstan, J.A.2    Herlocker, J.L.3    Riedl, J.4
  • 10
    • 0002549585 scopus 로고    scopus 로고
    • Eigentaste: A Constant Time Collaborative Filtering Algorithm
    • K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, "Eigentaste: A Constant Time Collaborative Filtering Algorithm," Information Retrieval J., vol. 4, no. 2, pp. 133-151, 2001.
    • (2001) Information Retrieval J. , vol.4 , Issue.2 , pp. 133-151
    • Goldberg, K.1    Roeder, T.2    Gupta, D.3    Perkins, C.4
  • 12
  • 13
    • 0038547942 scopus 로고    scopus 로고
    • Recommender Systems Using Linear Classifiers
    • T. Zhang and V. S. Iyengar, "Recommender Systems Using Linear Classifiers," J. Machine Learning Research, vol. 2, pp. 313-334, 2002.
    • (2002) J. Machine Learning Research , vol.2 , pp. 313-334
    • Zhang, T.1    Iyengar, V.S.2
  • 16
    • 0012352878 scopus 로고    scopus 로고
    • Collaborative Learning for Recommender Systems
    • W.S. Lee, "Collaborative Learning for Recommender Systems," Proc. 18th Int'l Conf. Machine Learning, pp. 314-321, 2001.
    • (2001) Proc. 18th Int'l Conf. Machine Learning , pp. 314-321
    • Lee, W.S.1
  • 18
    • 0036103365 scopus 로고    scopus 로고
    • Collaborative Recommendation via Adaptive Association Rule Mining
    • Jan.
    • W. Lin, S.A. Alvarez, and C. Ruiz, "Collaborative Recommendation via Adaptive Association Rule Mining," Data Mining and Knowledge Discovery, vol. 6, no. 1, pp. 83-105, Jan. 2002.
    • (2002) Data Mining and Knowledge Discovery , vol.6 , Issue.1 , pp. 83-105
    • Lin, W.1    Alvarez, S.A.2    Ruiz, C.3
  • 24
  • 25
    • 0004271194 scopus 로고
    • Troubleshooting under Uncertainty
    • Microsoft Research
    • D. Heckerman, J. Breese, and K. Rommelse, "Troubleshooting under Uncertainty," Technical Report MSR-TR-94-07, Microsoft Research, 1994.
    • (1994) Technical Report , vol.MSR-TR-94-07
    • Heckerman, D.1    Breese, J.2    Rommelse, K.3
  • 27


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.