메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 2583-2648

Theoretical analysis of Bayesian matrix factorization

Author keywords

Empirical Bayes; Matrix factorization; Model induced regularization; Non identifiable model; Positive part James Stein shrinkage; Variational Bayes

Indexed keywords

EMPIRICAL BAYES; MATRIX FACTORIZATIONS; MODEL-INDUCED REGULARIZATION; NON-IDENTIFIABLE MODEL; POSITIVE-PART JAMES-STEIN SHRINKAGE; VARIATIONAL BAYES;

EID: 80555154425     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (47)

References (57)
  • 5
    • 0012786195 scopus 로고
    • Multiple regression and estimation of the mean of a multivariate normal distribution
    • Department of Statistics, Stanford University, Stanford, CA, USA
    • A. J. Baranchik. Multiple regression and estimation of the mean of a multivariate normal distribution. Technical Report 51, Department of Statistics, Stanford University, Stanford, CA, USA, 1964.
    • (1964) Technical Report , vol.51
    • Baranchik, A.J.1
  • 8
    • 77951291046 scopus 로고    scopus 로고
    • A singular value thresholding algorithm for matrix completion
    • J. F. Cai, E. J. Candes, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956-1982, 2010.
    • (2010) SIAM Journal on Optimization , vol.20 , Issue.4 , pp. 1956-1982
    • Cai, J.F.1    Candes, E.J.2    Shen, Z.3
  • 12
    • 0035185654 scopus 로고    scopus 로고
    • Shrinkage estimators for covariance matrices
    • M. J. Daniels and R. E. Kass. Shrinkage estimators for covariance matrices. Biometrics, 57(4):1173-1184, 2001. (Pubitemid 33108110)
    • (2001) Biometrics , vol.57 , Issue.4 , pp. 1173-1184
    • Daniels, M.J.1    Kass, R.E.2
  • 13
    • 84949161149 scopus 로고
    • Stein's estimation rule and its competitors-an empirical Bayes approach
    • B. Efron and C. Morris. Stein's estimation rule and its competitors-an empirical Bayes approach. Journal of the American Statistical Association, 68:117-130, 1973.
    • (1973) Journal of the American Statistical Association , vol.68 , pp. 117-130
    • Efron, B.1    Morris, C.2
  • 14
    • 77954576158 scopus 로고    scopus 로고
    • S. Funk. Try this at home. http://sifter.org/~simon/journal/20061211. html, 2006.
    • (2006) Try This at Home
    • Funk, S.1
  • 15
    • 2942628165 scopus 로고    scopus 로고
    • Parameterization and Bayesian modeling
    • DOI 10.1198/016214504000000458
    • A. Gelman. Parameterization and Bayesian modeling. Journal of the American Statistical Association, 99:537-545, 2004. (Pubitemid 38750488)
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.466 , pp. 537-545
    • Gelman, A.1
  • 16
    • 38249008719 scopus 로고
    • A sequence of improvements over the James-Stein estimator
    • Y. Y. Guo and N. Pal. A sequence of improvements over the James-Stein estimator. Journal of Multivariate Analysis, 42(2):302-317, 1992.
    • (1992) Journal of Multivariate Analysis , vol.42 , Issue.2 , pp. 302-317
    • Guo, Y.Y.1    Pal, N.2
  • 18
    • 0000107975 scopus 로고
    • Relations between two sets of variates
    • H. Hotelling. Relations between two sets of variates. Biometrika, 28(3-4):321-377, 1936.
    • (1936) Biometrika , vol.28 , Issue.3-4 , pp. 321-377
    • Hotelling, H.1
  • 24
    • 0346961488 scopus 로고    scopus 로고
    • A well-conditioned estimator for large-dimensional covariance matrices
    • DOI 10.1016/S0047-259X(03)00096-4
    • O. Ledoit and M. Wolf. A well-conditioned estimator for large dimensional covariance matrices. Journal of Multivariate Analysis, pages 365-411, 2004. (Pubitemid 38033261)
    • (2004) Journal of Multivariate Analysis , vol.88 , Issue.2 , pp. 365-411
    • Ledoit, O.1    Wolf, M.2
  • 25
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • D. D. Lee and S. Seung. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788-791, 1999.
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.D.1    Seung, S.2
  • 28
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(2):415-447, 1992.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 415-447
    • MacKay, D.J.C.1
  • 31
    • 77956502504 scopus 로고    scopus 로고
    • Implicit regularization in variational Bayesian matrix factorization
    • A. T. Joachims and J. Fürnkranz, editors, Haifa, Israel, Jun. 21-25
    • S. Nakajima and M. Sugiyama. Implicit regularization in variational Bayesian matrix factorization. In A. T. Joachims and J. Fürnkranz, editors, Proceedings of 27th International Conference on Machine Learning (ICML2010), Haifa, Israel, Jun. 21-25 2010.
    • (2010) Proceedings of 27th International Conference on Machine Learning (ICML2010)
    • Nakajima, S.1    Sugiyama, M.2
  • 32
    • 34247210751 scopus 로고    scopus 로고
    • Variational Bayes solution of linear neural networks and its generalization performance
    • S. Nakajima and S. Watanabe. Variational Bayes solution of linear neural networks and its generalization performance. Neural Computation, 19(4):1112-1153, 2007.
    • (2007) Neural Computation , vol.19 , Issue.4 , pp. 1112-1153
    • Nakajima, S.1    Watanabe, S.2
  • 34
    • 48249083902 scopus 로고    scopus 로고
    • Improving regularized singular value decomposition for collaborative filtering
    • A. Paterek. Improving regularized singular value decomposition for collaborative filtering. In Proceedings of KDD Cup and Workshop, 2007.
    • (2007) Proceedings of KDD Cup and Workshop
    • Paterek, A.1
  • 35
    • 38049188186 scopus 로고    scopus 로고
    • Principal component analysis for large scale problems with lots of missing values
    • J. Kok, J. Koronacki, R. Lopez de Mantras, S. Matwin, D. Mladenic, and A. Skowron, editors, Berlin, Springer-Verlag
    • T. Raiko, A. Ilin, and J. Karhunen. Principal component analysis for large scale problems with lots of missing values. In J. Kok, J. Koronacki, R. Lopez de Mantras, S. Matwin, D. Mladenic, and A. Skowron, editors, Proceedings of the 18th European Conference on Machine Learning, volume 4701 of Lecture Notes in Computer Science, pages 691-698, Berlin, 2007. Springer-Verlag.
    • (2007) Proceedings of the 18th European Conference on Machine Learning, Volume 4701 of Lecture Notes in Computer Science , pp. 691-698
    • Raiko, T.1    Ilin, A.2    Karhunen, J.3
  • 38
    • 0000318553 scopus 로고
    • Stochastic complexity and modeling
    • J. Rissanen. Stochastic complexity and modeling. Annals of Statistics, 14(3):1080-1100, 1986.
    • (1986) Annals of Statistics , vol.14 , Issue.3 , pp. 1080-1100
    • Rissanen, J.1
  • 40
    • 85161989354 scopus 로고    scopus 로고
    • Probabilistic matrix factorization
    • J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Cambridge, MA, MIT Press
    • R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1257-1264, Cambridge, MA, 2008. MIT Press.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 1257-1264
    • Salakhutdinov, R.1    Mnih, A.2
  • 42
    • 21844518882 scopus 로고
    • Improving on the James-Stein positive-part estimator
    • P. Y.-S. Shao and W. E. Strawderman. Improving on the James-Stein positive-part estimator. The Annals of Statistics, 22:1517-1538, 1994.
    • (1994) The Annals of Statistics , vol.22 , pp. 1517-1538
    • Shao, P.Y.-S.1    Strawderman, W.E.2
  • 45
    • 0000813561 scopus 로고
    • Inadmissibility of the usual estimator for the mean of a multivariate normal distribution
    • C. Stein. Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. In Proc. of the 3rd Berkeley Symp. on Math. Stat. and Prob., pages 197-206, 1956.
    • (1956) Proc. of the 3rd Berkeley Symp. on Math. Stat. and Prob. , pp. 197-206
    • Stein, C.1
  • 47
    • 0000300851 scopus 로고
    • Proper Bayes minimax estimators of the multivariate normal mean
    • W. E. Strawderman. Proper Bayes minimax estimators of the multivariate normal mean. Annals of Mathematical Statistics, 42:385-388, 1971.
    • (1971) Annals of Mathematical Statistics , vol.42 , pp. 385-388
    • Strawderman, W.E.1
  • 49
    • 33646348720 scopus 로고    scopus 로고
    • Stochastic complexities of Gaussian mixtures in variational Bayesian approximation
    • K. Watanabe and S. Watanabe. Stochastic complexities of Gaussian mixtures in variational Bayesian approximation. Journal of Machine Learning Research, 7:625-644, 2006. (Pubitemid 43668112)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 625-644
    • Watanabe, K.1    Watanabe, S.2
  • 50
    • 0035316373 scopus 로고    scopus 로고
    • Algebraic analysis for nonidentifiable learning machines
    • DOI 10.1162/089976601300014402
    • S. Watanabe. Algebraic analysis for nonidentifiable learning machines. Neural Computation, 13(4):899-933, 2001. (Pubitemid 33594310)
    • (2001) Neural Computation , vol.13 , Issue.4 , pp. 899-933
    • Watanabe, S.1
  • 52
    • 85161974668 scopus 로고    scopus 로고
    • A new view of automatric relevance determination
    • J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Cambridge, MA, MIT Press
    • D. Wipf and S. Nagarajan. A new view of automatric relevance determination. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1625-1632, Cambridge, MA, 2008. MIT Press.
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 1625-1632
    • Wipf, D.1    Nagarajan, S.2
  • 53
    • 0001098205 scopus 로고
    • Estimation of principal components and related models by iterative least squares
    • P. R. Krishnaiah, editor, Academic Press, New York, NY, USA
    • H. Wold. Estimation of principal components and related models by iterative least squares. In P. R. Krishnaiah, editor, Multivariate Analysis, pages 391-420. Academic Press, New York, NY, USA, 1966.
    • (1966) Multivariate Analysis , pp. 391-420
    • Wold, H.1
  • 54
    • 0031279853 scopus 로고    scopus 로고
    • Characterizing the response of PET and fMRI data using multivariate linear models
    • DOI 10.1006/nimg.1997.0294
    • K. J. Worsley, J-B. Poline, K. J. Friston, and A. C. Evanss. Characterizing the response of PET and fMRI data using multivariate linear models. NeuroImage, 6(4):305-319, 1997. (Pubitemid 28018719)
    • (1997) NeuroImage , vol.6 , Issue.4 , pp. 305-319
    • Worsley, K.J.1    Poline, J.-B.2    Friston, K.J.3    Evans, A.C.4
  • 55
    • 0742324924 scopus 로고    scopus 로고
    • Singularities in mixture models and upper bounds of stochastic complexity
    • DOI 10.1016/S0893-6080(03)00005-4
    • K. Yamazaki and S. Watanabe. Singularities in mixture models and upper bounds of stochastic complexity. Neural Networks, 16(7):1029-1038, 2003. (Pubitemid 38147281)
    • (2003) Neural Networks , vol.16 , Issue.7 , pp. 1029-1038
    • Yamazaki, K.1    Watanabe, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.