-
2
-
-
71149087298
-
The Gaussian process density sampler
-
D. Koller, D. Schuurmans, Y. Bengio and L. Bottou, editors
-
R. P. Adams, I. Murray and D. J. C. MacKay. The Gaussian process density sampler. In D. Koller, D. Schuurmans, Y. Bengio and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 9-16. 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 9-16
-
-
Adams, R.P.1
Murray, I.2
MacKay, D.J.C.3
-
4
-
-
57849088168
-
A tutorial on adaptive MCMC
-
Monte Carlo algorithms for Gaussian processesC. Andrieu and J. Thoms
-
C. Andrieu and J. Thoms. A tutorial on adaptive MCMC. Statistics and Computing, 18:343-373, 2008.
-
(2008)
Statistics and Computing
, vol.18
, pp. 343-373
-
-
Andrieu, C.1
Thoms, J.2
-
5
-
-
33745038921
-
Ranked prediction of p53 targets using hidden variable dynamic modeling
-
M. Barenco, D. Tomescu, D. Brewer, J. Callard, R. Stark and M. Hubank. Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biology, 7(3), 2006.
-
(2006)
Genome Biology
, vol.7
, Issue.3
-
-
Barenco, M.1
Tomescu, D.2
Brewer, D.3
Callard, J.4
Stark, R.5
Hubank, M.6
-
8
-
-
0038891993
-
Sparse online gaussian processes
-
L. Csato and M. Opper. Sparse online Gaussian processes. Neural Computation, 14:641-68, 2002.
-
(2002)
Neural Computation
, vol.14
, pp. 641-668
-
-
Csato, L.1
Opper, M.2
-
11
-
-
4243137056
-
Hybrid Monte Carlo
-
S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth. Hybrid Monte Carlo. Physics Letters B, 195(2):216-222, 1987.
-
(1987)
Physics Letters B
, vol.195
, Issue.2
, pp. 216-222
-
-
Duane, S.1
Kennedy, A.D.2
Pendleton, B.J.3
Roweth, D.4
-
12
-
-
85032395811
-
On the movement of small particles suspended in a stationary liquid by the molecular kinetic theory of heat
-
A. Einstein. On the movement of small particles suspended in a stationary liquid by the molecular kinetic theory of heat. Dover Publications, 1905.
-
(1905)
Dover Publications
-
-
Einstein, A.1
-
13
-
-
85032412711
-
Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities
-
P. Gao, A. Honkela, N. Lawrence and M. Rattray. Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities. In ECCB08, 2008.
-
(2008)
ECCB08
-
-
Gao, P.1
Honkela, A.2
Lawrence, N.3
Rattray, M.4
-
17
-
-
0000324169
-
Adaptive rejection sampling for Gibbs sampling
-
W. R. Gilks and P. Wild. Adaptive rejection sampling for Gibbs sampling. Applied Statistics, 41(2):337-348, 1992.
-
(1992)
Applied Statistics
, vol.41
, Issue.2
, pp. 337-348
-
-
Gilks, W.R.1
Wild, P.2
-
19
-
-
25444528713
-
Assessing approximate inference for binary gaussian process classification
-
M. Kuss and C. E. Rasmussen. Assessing approximate inference for binary Gaussian process classification. Journal of Machine Learning Research, 6:1679-1704, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 1679-1704
-
-
Kuss, M.1
Rasmussen, C.E.2
-
22
-
-
0345978970
-
Expectation propagation for approximate bayesian inference
-
T. Minka. Expectation propagation for approximate Bayesian inference. In UAI, pages 362-369, 2001.
-
(2001)
UAI
, pp. 362-369
-
-
Minka, T.1
-
25
-
-
0001692404
-
Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation
-
M. I. Jordan, editor, Kluwer Academic Publishers
-
R. M. Neal. Suppressing random walks in Markov chain Monte Carlo using ordered overrelaxation. In M. I. Jordan, editor, Learning in Graphical Models, pages 205-225. Kluwer Academic Publishers, 1998.
-
(1998)
Learning in Graphical Models
, pp. 205-225
-
-
Neal, R.M.1
-
27
-
-
63249135864
-
The variational Gaussian approximation revisited
-
M. Opper and C. Archambeau. The variational Gaussian approximation revisited. Neural Computation, 21(3), 2009.
-
(2009)
Neural Computation
, vol.21
, Issue.3
-
-
Opper, M.1
Archambeau, C.2
-
31
-
-
0031285157
-
Weak convergence and optimal scaling of random walk metropolis algorithms
-
G. O. Roberts, A. Gelman and W. R. Gilks. Weak convergence and optimal scaling of random walk metropolis algorithms. Annals of Applied Probability, 7:110-120, 1996.
-
(1996)
Annals of Applied Probability
, vol.7
, pp. 110-120
-
-
Roberts, G.O.1
Gelman, A.2
-
32
-
-
34249856850
-
Bayesian model-based inference of transcription factor activity
-
S. Rogers, R. Khanin and M. Girolami. Bayesian model-based inference of transcription factor activity. BMC Bioinformatics, 8(2), 2006.
-
(2006)
BMC Bioinformatics
, vol.8
, Issue.2
-
-
Rogers, S.1
Khanin, R.2
Girolami, M.3
-
42
-
-
83855162680
-
Efficient sampling for Gaussian process inference using control variables
-
M. K. Titsias, N. D. Lawrence and M. Rattray. Efficient sampling for Gaussian process inference using control variables. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 1681-1688. 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 1681-1688
-
-
Titsias, M.K.1
Lawrence, N.D.2
Rattray, M.3
-
43
-
-
36149005118
-
On the theory of Brownian motion
-
G. E. Uhlenbeck and L. S. Ornstein. On the theory of Brownian motion. Physics Review, 36:823-841, 1930.
-
(1930)
Physics Review
, vol.36
, pp. 823-841
-
-
Uhlenbeck, G.E.1
Ornstein, L.S.2
-
46
-
-
36149027699
-
On the Theory of the Brownian motion II
-
M. C. Wang and G. E. Uhlenbeck. On the Theory of the Brownian motion II. Reviews of Modern Physics, 17(2-3):323-342, 1945.
-
(1945)
Reviews of Modern Physics
, vol.17
, Issue.2-3
, pp. 323-342
-
-
Wang, M.C.1
Uhlenbeck, G.E.2
|