메뉴 건너뛰기




Volumn 9, Issue 11, 2013, Pages

Translation Initiation Factors eIF3 and HCR1 Control Translation Termination and Stop Codon Read-Through in Yeast Cells

Author keywords

[No Author keywords available]

Indexed keywords

EUKARYOTIC RELEASE FACTOR 1; EUKARYOTIC RELEASE FACTOR 3; INITIATION FACTOR; INITIATION FACTOR 3; INITIATION FACTOR 5; PROTEIN ABCE1; PROTEIN HCR1; RIBOSOME RECYCLING FACTOR; UNCLASSIFIED DRUG;

EID: 84888230681     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1003962     Document Type: Article
Times cited : (76)

References (51)
  • 1
    • 4744350877 scopus 로고    scopus 로고
    • The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly
    • Dong J, Lai R, Nielsen K, Fekete CA, Qiu H, et al. (2004) The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly. J Biol Chem 279: 42157-42168.
    • (2004) J Biol Chem , vol.279 , pp. 42157-42168
    • Dong, J.1    Lai, R.2    Nielsen, K.3    Fekete, C.A.4    Qiu, H.5
  • 2
    • 77649240878 scopus 로고    scopus 로고
    • The iron-sulphur protein RNase L inhibitor functions in translation termination
    • Khoshnevis S, Gross T, Rotte C, Baierlein C, Ficner R, et al. (2010) The iron-sulphur protein RNase L inhibitor functions in translation termination. EMBO Rep 11: 214-219.
    • (2010) EMBO Rep , vol.11 , pp. 214-219
    • Khoshnevis, S.1    Gross, T.2    Rotte, C.3    Baierlein, C.4    Ficner, R.5
  • 3
    • 49549099576 scopus 로고    scopus 로고
    • The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation
    • Bolger TA, Folkmann AW, Tran EJ, Wente SR, (2008) The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation. Cell 134: 624-633.
    • (2008) Cell , vol.134 , pp. 624-633
    • Bolger, T.A.1    Folkmann, A.W.2    Tran, E.J.3    Wente, S.R.4
  • 4
    • 65549167195 scopus 로고    scopus 로고
    • Hypusine-containing protein eIF5A promotes translation elongation
    • Saini P, Eyler DE, Green R, Dever TE, (2009) Hypusine-containing protein eIF5A promotes translation elongation. Nature 459: 118-121.
    • (2009) Nature , vol.459 , pp. 118-121
    • Saini, P.1    Eyler, D.E.2    Green, R.3    Dever, T.E.4
  • 5
    • 35348815020 scopus 로고    scopus 로고
    • Recycling of Eukaryotic Posttermination Ribosomal Complexes
    • Pisarev AV, Hellen CUT, Pestova TV, (2007) Recycling of Eukaryotic Posttermination Ribosomal Complexes. Cell 131: 286-299.
    • (2007) Cell , vol.131 , pp. 286-299
    • Pisarev, A.V.1    Hellen, C.U.T.2    Pestova, T.V.3
  • 7
    • 84863624560 scopus 로고    scopus 로고
    • Ribozoomin' - Translation Initiation from the Perspective of the Ribosome-bound Eukaryotic Initiation Factors (eIFs)
    • Valášek LS, (2012) 'Ribozoomin' - Translation Initiation from the Perspective of the Ribosome-bound Eukaryotic Initiation Factors (eIFs). Curr Protein Pept Sci 13: 305-330.
    • (2012) Curr Protein Pept Sci , vol.13 , pp. 305-330
    • Valášek, L.S.1
  • 8
    • 0346497769 scopus 로고    scopus 로고
    • What determines whether mammalian ribosomes resume scanning after translation of a short upstream open reading frame?
    • Pöyry TA, Kaminski A, Jackson RJ, (2004) What determines whether mammalian ribosomes resume scanning after translation of a short upstream open reading frame? Genes Dev 18: 62-75.
    • (2004) Genes Dev , vol.18 , pp. 62-75
    • Pöyry, T.A.1    Kaminski, A.2    Jackson, R.J.3
  • 9
    • 51149091031 scopus 로고    scopus 로고
    • eIF3a cooperates with sequences 5′ of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA
    • Szamecz B, Rutkai E, Cuchalova L, Munzarova V, Herrmannova A, et al. (2008) eIF3a cooperates with sequences 5′ of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA. Genes Dev 22: 2414-2425.
    • (2008) Genes Dev , vol.22 , pp. 2414-2425
    • Szamecz, B.1    Rutkai, E.2    Cuchalova, L.3    Munzarova, V.4    Herrmannova, A.5
  • 10
    • 79960959927 scopus 로고    scopus 로고
    • Translation Reinitiation Relies on the Interaction between eIF3a/TIF32 and Progressively Folded cis-Acting mRNA Elements Preceding Short uORFs
    • Munzarová V, Pánek J, Gunišová S, Dányi I, Szamecz B, et al. (2011) Translation Reinitiation Relies on the Interaction between eIF3a/TIF32 and Progressively Folded cis-Acting mRNA Elements Preceding Short uORFs. PLoS Genet 7: e1002137.
    • (2011) PLoS Genet , vol.7
    • Munzarová, V.1    Pánek, J.2    Gunišová, S.3    Dányi, I.4    Szamecz, B.5
  • 11
    • 33744993160 scopus 로고    scopus 로고
    • In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3
    • Alkalaeva EZ, Pisarev AV, Frolova LY, Kisselev LL, Pestova TV, (2006) In vitro reconstitution of eukaryotic translation reveals cooperativity between release factors eRF1 and eRF3. Cell 125: 1125-1136.
    • (2006) Cell , vol.125 , pp. 1125-1136
    • Alkalaeva, E.Z.1    Pisarev, A.V.2    Frolova, L.Y.3    Kisselev, L.L.4    Pestova, T.V.5
  • 12
    • 84855501083 scopus 로고    scopus 로고
    • Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast
    • Shoemaker CJ, Green R, (2011) Kinetic analysis reveals the ordered coupling of translation termination and ribosome recycling in yeast. Proc Natl Acad Sci U S A 108: E1392-1398.
    • (2011) Proc Natl Acad Sci U S A , vol.108
    • Shoemaker, C.J.1    Green, R.2
  • 13
    • 84857396073 scopus 로고    scopus 로고
    • Structural basis of highly conserved ribosome recycling in eukaryotes and archaea
    • Becker T, Franckenberg S, Wickles S, Shoemaker CJ, Anger AM, et al. (2012) Structural basis of highly conserved ribosome recycling in eukaryotes and archaea. Nature 482: 501-506.
    • (2012) Nature , vol.482 , pp. 501-506
    • Becker, T.1    Franckenberg, S.2    Wickles, S.3    Shoemaker, C.J.4    Anger, A.M.5
  • 14
    • 1642447080 scopus 로고    scopus 로고
    • Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae
    • Keeling KM, Lanier J, Du M, Salas-Marco J, Gao L, et al. (2004) Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA 10: 691-703.
    • (2004) RNA , vol.10 , pp. 691-703
    • Keeling, K.M.1    Lanier, J.2    Du, M.3    Salas-Marco, J.4    Gao, L.5
  • 15
    • 26844489762 scopus 로고    scopus 로고
    • Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile
    • Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, et al. (2005) Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 123: 507-519.
    • (2005) Cell , vol.123 , pp. 507-519
    • Schuldiner, M.1    Collins, S.R.2    Thompson, N.J.3    Denic, V.4    Bhamidipati, A.5
  • 16
  • 17
    • 79952750280 scopus 로고    scopus 로고
    • Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1
    • Barthelme D, Dinkelaker S, Albers SV, Londei P, Ermler U, et al. (2011) Ribosome recycling depends on a mechanistic link between the FeS cluster domain and a conformational switch of the twin-ATPase ABCE1. Proc Natl Acad Sci U S A 108: 3228-3233.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 3228-3233
    • Barthelme, D.1    Dinkelaker, S.2    Albers, S.V.3    Londei, P.4    Ermler, U.5
  • 18
    • 14744301484 scopus 로고    scopus 로고
    • Functional link between ribosome formation and biogenesis of ironsulfur proteins
    • Yarunin A, Panse VG, Petfalski E, Dez C, Tollervey D, et al. (2005) Functional link between ribosome formation and biogenesis of ironsulfur proteins. EMBO J 24: 580-588.
    • (2005) EMBO J , vol.24 , pp. 580-588
    • Yarunin, A.1    Panse, V.G.2    Petfalski, E.3    Dez, C.4    Tollervey, D.5
  • 19
    • 0035865256 scopus 로고    scopus 로고
    • Related eIF3 subunits TIF32 and HCR1 interact with an RNA recoginition motif in PRT1 required for eIF3 integrity and ribosome binding
    • Valášek L, Phan L, Schoenfeld LW, Valášková V, Hinnebusch AG, (2001) Related eIF3 subunits TIF32 and HCR1 interact with an RNA recoginition motif in PRT1 required for eIF3 integrity and ribosome binding. EMBO J 20: 891-904.
    • (2001) EMBO J , vol.20 , pp. 891-904
    • Valášek, L.1    Phan, L.2    Schoenfeld, L.W.3    Valášková, V.4    Hinnebusch, A.G.5
  • 20
    • 33645841066 scopus 로고    scopus 로고
    • Interaction of the RNP1 motif in PRT1 with HCR1 promotes 40S binding of eukaryotic initiation factor 3 in yeast
    • Nielsen KH, Valášek L, Sykes C, Jivotovskaya A, Hinnebusch AG, (2006) Interaction of the RNP1 motif in PRT1 with HCR1 promotes 40S binding of eukaryotic initiation factor 3 in yeast. Mol Cell Biol 26: 2984-2998.
    • (2006) Mol Cell Biol , vol.26 , pp. 2984-2998
    • Nielsen, K.H.1    Valášek, L.2    Sykes, C.3    Jivotovskaya, A.4    Hinnebusch, A.G.5
  • 21
    • 77649269977 scopus 로고    scopus 로고
    • The indispensable N-terminal half of eIF3j co-operates with its structurally conserved binding partner eIF3b-RRM and eIF1A in stringent AUG selection
    • ElAntak L, Wagner S, Herrmannová A, Karásková M, Rutkai E, et al. (2010) The indispensable N-terminal half of eIF3j co-operates with its structurally conserved binding partner eIF3b-RRM and eIF1A in stringent AUG selection. J Mol Biol 396: 1097-1116.
    • (2010) J Mol Biol , vol.396 , pp. 1097-1116
    • ElAntak, L.1    Wagner, S.2    Herrmannová, A.3    Karásková, M.4    Rutkai, E.5
  • 22
    • 77956713468 scopus 로고    scopus 로고
    • The C-Terminal Region of Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes mRNA Recruitment, Scanning, and, Together with eIF3j and the eIF3b RNA Recognition Motif, Selection of AUG Start Codons
    • Chiu W-L, Wagner S, Herrmannová A, Burela L, Zhang F, et al. (2010) The C-Terminal Region of Eukaryotic Translation Initiation Factor 3a (eIF3a) Promotes mRNA Recruitment, Scanning, and, Together with eIF3j and the eIF3b RNA Recognition Motif, Selection of AUG Start Codons. Mol Cell Biol 30: 4415-4434.
    • (2010) Mol Cell Biol , vol.30 , pp. 4415-4434
    • Chiu, W.-L.1    Wagner, S.2    Herrmannová, A.3    Burela, L.4    Zhang, F.5
  • 23
    • 0035900747 scopus 로고    scopus 로고
    • Dual function of eIF3j/Hcr1p in processing 20 S Pre-rRNA and translation initiation
    • Valášek L, Hašek J, Nielsen KH, Hinnebusch AG, (2001) Dual function of eIF3j/Hcr1p in processing 20 S Pre-rRNA and translation initiation. J Biol Chem 276: 43351-43360.
    • (2001) J Biol Chem , vol.276 , pp. 43351-43360
    • Valášek, L.1    Hašek, J.2    Nielsen, K.H.3    Hinnebusch, A.G.4
  • 24
    • 0031912226 scopus 로고    scopus 로고
    • RPG1: an essential gene of saccharomyces cerevisiae encoding a 110-kDa protein required for passage through the G1 phase
    • Kovarik P, Hašek J, Valášek L, Ruis H, (1998) RPG1: an essential gene of saccharomyces cerevisiae encoding a 110-kDa protein required for passage through the G1 phase. Curr Genet 33: 100-109.
    • (1998) Curr Genet , vol.33 , pp. 100-109
    • Kovarik, P.1    Hašek, J.2    Valášek, L.3    Ruis, H.4
  • 25
    • 38449116475 scopus 로고    scopus 로고
    • In vivo stabilization of preinitiation complexes by formaldehyde cross-linking
    • Valášek L, Szamecz B, Hinnebusch AG, Nielsen KH, (2007) In vivo stabilization of preinitiation complexes by formaldehyde cross-linking. Methods Enzymol 429: 163-183.
    • (2007) Methods Enzymol , vol.429 , pp. 163-183
    • Valášek, L.1    Szamecz, B.2    Hinnebusch, A.G.3    Nielsen, K.H.4
  • 26
    • 77950919261 scopus 로고    scopus 로고
    • Pelota interacts with HAX1, EIF3G and SRPX and the resulting protein complexes are associated with the actin cytoskeleton
    • Burnicka-Turek O, Kata A, Buyandelger B, Ebermann L, Kramann N, et al. (2010) Pelota interacts with HAX1, EIF3G and SRPX and the resulting protein complexes are associated with the actin cytoskeleton. BMC Cell Biol 11: 28.
    • (2010) BMC Cell Biol , vol.11 , pp. 28
    • Burnicka-Turek, O.1    Kata, A.2    Buyandelger, B.3    Ebermann, L.4    Kramann, N.5
  • 27
    • 57149143976 scopus 로고    scopus 로고
    • A quantitative estimation of the global translational activity in logarithmically growing yeast cells
    • von der Haar T, (2008) A quantitative estimation of the global translational activity in logarithmically growing yeast cells. BMC Syst Biol 2: 87.
    • (2008) BMC Syst Biol , vol.2 , pp. 87
    • von der Haar, T.1
  • 28
    • 44849112866 scopus 로고    scopus 로고
    • Mutation at tyrosine in AMLRY (GILRY like) motif of yeast eRF1 on nonsense codons suppression and binding affinity to eRF3
    • Akhmaloka, Susilowati PE, Subandi, Madayanti F, (2008) Mutation at tyrosine in AMLRY (GILRY like) motif of yeast eRF1 on nonsense codons suppression and binding affinity to eRF3. Int J Biol Sci 4: 87-95.
    • (2008) Int J Biol Sci , vol.4 , pp. 87-95
    • Akhmaloka, S.P.E.1    Subandi, M.F.2
  • 29
    • 0038290253 scopus 로고    scopus 로고
    • Guanidine reduces stop codon read-through caused by missense mutations in SUP35 or SUP45
    • Bradley ME, Bagriantsev S, Vishveshwara N, Liebman SW, (2003) Guanidine reduces stop codon read-through caused by missense mutations in SUP35 or SUP45. Yeast 20: 625-632.
    • (2003) Yeast , vol.20 , pp. 625-632
    • Bradley, M.E.1    Bagriantsev, S.2    Vishveshwara, N.3    Liebman, S.W.4
  • 30
    • 0033827056 scopus 로고    scopus 로고
    • Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition
    • Bertram G, Bell HA, Ritchie DW, Fullerton G, Stansfield I, (2000) Terminating eukaryote translation: domain 1 of release factor eRF1 functions in stop codon recognition. Rna 6: 1236-1247.
    • (2000) Rna , vol.6 , pp. 1236-1247
    • Bertram, G.1    Bell, H.A.2    Ritchie, D.W.3    Fullerton, G.4    Stansfield, I.5
  • 31
    • 77956553901 scopus 로고    scopus 로고
    • Decoding accuracy in eRF1 mutants and its correlation with pleiotropic quantitative traits in yeast
    • Merritt GH, Naemi WR, Mugnier P, Webb HM, Tuite MF, et al. (2010) Decoding accuracy in eRF1 mutants and its correlation with pleiotropic quantitative traits in yeast. Nucleic Acids Res 38: 5479-5492.
    • (2010) Nucleic Acids Res , vol.38 , pp. 5479-5492
    • Merritt, G.H.1    Naemi, W.R.2    Mugnier, P.3    Webb, H.M.4    Tuite, M.F.5
  • 32
    • 78149478886 scopus 로고    scopus 로고
    • RNA polymerase II subunits link transcription and mRNA decay to translation
    • Harel-Sharvit L, Eldad N, Haimovich G, Barkai O, Duek L, et al. (2010) RNA polymerase II subunits link transcription and mRNA decay to translation. Cell 143: 552-563.
    • (2010) Cell , vol.143 , pp. 552-563
    • Harel-Sharvit, L.1    Eldad, N.2    Haimovich, G.3    Barkai, O.4    Duek, L.5
  • 33
    • 41949113083 scopus 로고    scopus 로고
    • Upf1 Phosphorylation Triggers Translational Repression during Nonsense-Mediated mRNA Decay
    • Isken O, Kim YK, Hosoda N, Mayeur GL, Hershey JWB, et al. (2008) Upf1 Phosphorylation Triggers Translational Repression during Nonsense-Mediated mRNA Decay. Cell 133: 314-327.
    • (2008) Cell , vol.133 , pp. 314-327
    • Isken, O.1    Kim, Y.K.2    Hosoda, N.3    Mayeur, G.L.4    Hershey, J.W.B.5
  • 34
    • 70349780560 scopus 로고    scopus 로고
    • The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries
    • Sha Z, Brill LM, Cabrera R, Kleifeld O, Scheliga JS, et al. (2009) The eIF3 interactome reveals the translasome, a supercomplex linking protein synthesis and degradation machineries. Mol Cell 36: 141-152.
    • (2009) Mol Cell , vol.36 , pp. 141-152
    • Sha, Z.1    Brill, L.M.2    Cabrera, R.3    Kleifeld, O.4    Scheliga, J.S.5
  • 35
    • 84878826802 scopus 로고    scopus 로고
    • Architecture of human translation initiation factor 3
    • Querol-Audi J, Sun C, Vogan JM, Smith MD, Gu Y, et al. (2013) Architecture of human translation initiation factor 3. Structure 21: 920-928.
    • (2013) Structure , vol.21 , pp. 920-928
    • Querol-Audi, J.1    Sun, C.2    Vogan, J.M.3    Smith, M.D.4    Gu, Y.5
  • 36
    • 84878333225 scopus 로고    scopus 로고
    • Structure of the Mammalian Ribosomal 43S Preinitiation Complex Bound to the Scanning Factor DHX29
    • Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY, et al. (2013) Structure of the Mammalian Ribosomal 43S Preinitiation Complex Bound to the Scanning Factor DHX29. Cell 153: 1108-1119.
    • (2013) Cell , vol.153 , pp. 1108-1119
    • Hashem, Y.1    des Georges, A.2    Dhote, V.3    Langlois, R.4    Liao, H.Y.5
  • 37
    • 57449083256 scopus 로고    scopus 로고
    • Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3
    • Zhou M, Sandercock AM, Fraser CS, Ridlova G, Stephens E, et al. (2008) Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc Natl Acad Sci USA 105: 18139-18144.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 18139-18144
    • Zhou, M.1    Sandercock, A.M.2    Fraser, C.S.3    Ridlova, G.4    Stephens, E.5
  • 38
    • 34250357112 scopus 로고    scopus 로고
    • 3j is located in the decoding center of the human 40S ribosomal subunit
    • Fraser CS, Berry KE, Hershey JW, Doudna JA, (2007) 3j is located in the decoding center of the human 40S ribosomal subunit. Mol Cell 26: 811-819.
    • (2007) Mol Cell , vol.26 , pp. 811-819
    • Fraser, C.S.1    Berry, K.E.2    Hershey, J.W.3    Doudna, J.A.4
  • 39
    • 44649095899 scopus 로고    scopus 로고
    • Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes
    • Pisarev AV, Kolupaeva VG, Yusupov MM, Hellen CUT, Pestova TV, (2008) Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO J 27: 1609-1621.
    • (2008) EMBO J , vol.27 , pp. 1609-1621
    • Pisarev, A.V.1    Kolupaeva, V.G.2    Yusupov, M.M.3    Hellen, C.U.T.4    Pestova, T.V.5
  • 40
    • 34547178178 scopus 로고    scopus 로고
    • Reconstitution reveals the functional core of mammalian eIF3
    • Masutani M, Sonenberg N, Yokoyama S, Imataka H, (2007) Reconstitution reveals the functional core of mammalian eIF3. EMBO J 26: 3373-3383.
    • (2007) EMBO J , vol.26 , pp. 3373-3383
    • Masutani, M.1    Sonenberg, N.2    Yokoyama, S.3    Imataka, H.4
  • 41
    • 84868598068 scopus 로고    scopus 로고
    • Cryo-EM structure of the mammalian eukaryotic release factor eRF1-eRF3-associated termination complex
    • Taylor D, Unbehaun A, Li W, Das S, Lei J, et al. (2012) Cryo-EM structure of the mammalian eukaryotic release factor eRF1-eRF3-associated termination complex. Proc Natl Acad Sci U S A 109: 18413-18418.
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 18413-18418
    • Taylor, D.1    Unbehaun, A.2    Li, W.3    Das, S.4    Lei, J.5
  • 42
    • 77956657467 scopus 로고    scopus 로고
    • The RNA Recognition Motif of Eukaryotic Translation Initiation Factor 3g (eIF3g) Is Required for Resumption of Scanning of Posttermination Ribosomes for Reinitiation on GCN4 and Together with eIF3i Stimulates Linear Scanning
    • Cuchalová L, Kouba T, Herrmannová A, Danyi I, Chiu W-l, et al. (2010) The RNA Recognition Motif of Eukaryotic Translation Initiation Factor 3g (eIF3g) Is Required for Resumption of Scanning of Posttermination Ribosomes for Reinitiation on GCN4 and Together with eIF3i Stimulates Linear Scanning. Mol Cell Biol 30: 4671-4686.
    • (2010) Mol Cell Biol , vol.30 , pp. 4671-4686
    • Cuchalová, L.1    Kouba, T.2    Herrmannová, A.3    Danyi, I.4    Chiu, W.-L.5
  • 43
    • 84863338242 scopus 로고    scopus 로고
    • Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-Initiation complex assembly
    • Herrmannová A, Daujotyte D, Yang JC, Cuchalová L, Gorrec F, et al. (2012) Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-Initiation complex assembly. Nucleic Acids Res 40: 2294-2311.
    • (2012) Nucleic Acids Res , vol.40 , pp. 2294-2311
    • Herrmannová, A.1    Daujotyte, D.2    Yang, J.C.3    Cuchalová, L.4    Gorrec, F.5
  • 44
    • 0037444342 scopus 로고    scopus 로고
    • The Yeast eIF3 Subunits TIF32/a and NIP1/c and eIF5 Make Critical Connections with the 40S Ribosome in vivo
    • Valášek L, Mathew A, Shin BS, Nielsen KH, Szamecz B, et al. (2003) The Yeast eIF3 Subunits TIF32/a and NIP1/c and eIF5 Make Critical Connections with the 40S Ribosome in vivo. Genes Dev 17: 786-799.
    • (2003) Genes Dev , vol.17 , pp. 786-799
    • Valášek, L.1    Mathew, A.2    Shin, B.S.3    Nielsen, K.H.4    Szamecz, B.5
  • 45
    • 1942470550 scopus 로고    scopus 로고
    • Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe
    • Kong C, Ito K, Walsh MA, Wada M, Liu Y, et al. (2004) Crystal structure and functional analysis of the eukaryotic class II release factor eRF3 from S. pombe. Mol Cell 14: 233-245.
    • (2004) Mol Cell , vol.14 , pp. 233-245
    • Kong, C.1    Ito, K.2    Walsh, M.A.3    Wada, M.4    Liu, Y.5
  • 46
    • 0039183713 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae HCRI gene encoding a homologue of the p35 subunit of human translation eukaryotic initiation factor 3 (eIF3) is a high copy suppressor of a temperature-sensitive mutation in the Rpg1p subunit of yeast eIF3
    • Valášek L, Hašek J, Trachsel H, Imre EM, Ruis H, (1999) The Saccharomyces cerevisiae HCRI gene encoding a homologue of the p35 subunit of human translation eukaryotic initiation factor 3 (eIF3) is a high copy suppressor of a temperature-sensitive mutation in the Rpg1p subunit of yeast eIF3. J Biol Chem 274: 27567-27572.
    • (1999) J Biol Chem , vol.274 , pp. 27567-27572
    • Valášek, L.1    Hašek, J.2    Trachsel, H.3    Imre, E.M.4    Ruis, H.5
  • 47
    • 12644303224 scopus 로고    scopus 로고
    • Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G
    • Tarun SZ, Sachs AB, (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 15: 7168-7177.
    • (1996) EMBO J , vol.15 , pp. 7168-7177
    • Tarun, S.Z.1    Sachs, A.B.2
  • 48
    • 0032741067 scopus 로고    scopus 로고
    • Recognition of yeast mRNAs as "nonsense containing" leads to both inhibition of mRNA translation and mRNA degradation: implications for the control of mRNA decapping
    • Muhlrad D, Parker R, (1999) Recognition of yeast mRNAs as "nonsense containing" leads to both inhibition of mRNA translation and mRNA degradation: implications for the control of mRNA decapping. Mol Biol Cell 10: 3971-3978.
    • (1999) Mol Biol Cell , vol.10 , pp. 3971-3978
    • Muhlrad, D.1    Parker, R.2
  • 49
    • 38449122331 scopus 로고    scopus 로고
    • In vivo deletion analysis of the architecture of a multi-protein complex of translation initiation factors
    • Nielsen KH, Valášek L, (2007) In vivo deletion analysis of the architecture of a multi-protein complex of translation initiation factors. Methods Enzymol 431: 15-32.
    • (2007) Methods Enzymol , vol.431 , pp. 15-32
    • Nielsen, K.H.1    Valášek, L.2
  • 50
    • 0032516908 scopus 로고    scopus 로고
    • Rpg1, the Saccharomyces cerevisiae homologue of the largest subunit of mammlian translation initiation factor 3, is required for translational activity
    • Valášek L, Trachsel H, Hašek J, Ruis H, (1998) Rpg1, the Saccharomyces cerevisiae homologue of the largest subunit of mammlian translation initiation factor 3, is required for translational activity. J Biol Chem 273: 21253-21260.
    • (1998) J Biol Chem , vol.273 , pp. 21253-21260
    • Valášek, L.1    Trachsel, H.2    Hašek, J.3    Ruis, H.4
  • 51
    • 0028012044 scopus 로고
    • Effect of sequence context at stop codons on efficiency of reinitiation in GCN4 translational control
    • Grant CM, Hinnebusch AG, (1994) Effect of sequence context at stop codons on efficiency of reinitiation in GCN4 translational control. Mol Cell Biol 14: 606-618.
    • (1994) Mol Cell Biol , vol.14 , pp. 606-618
    • Grant, C.M.1    Hinnebusch, A.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.