메뉴 건너뛰기




Volumn 2, Issue 1, 2012, Pages 1-14

Ranked selection of nearest discriminating features

Author keywords

[No Author keywords available]

Indexed keywords

FEATURE EXTRACTION; GENES;

EID: 84888006369     PISSN: None     EISSN: 21921962     Source Type: Journal    
DOI: 10.1186/2192-1962-2-12     Document Type: Article
Times cited : (21)

References (54)
  • 1
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A: An introduction to variable and feature selection.J Machine Learning Res 2003, 3:1157–1182.
    • (2003) J Machine Learning Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 2
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larraage P: A review of feature selection techniques in bioinformatics.Bioinformatics 2007,23(19):2507–2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larraage, P.3
  • 3
    • 3042532685 scopus 로고    scopus 로고
    • Filter versus warpper gene selection approaches in dna microarray domains
    • Inza I, Larranaga P, Blanco R, Cerrolaza A: Filter versus warpper gene selection approaches in dna microarray domains.Artif Intelligence Med 2004, 31:91–103.
    • (2004) Artif Intelligence Med , vol.31 , pp. 91-103
    • Inza, I.1    Larranaga, P.2    Blanco, R.3    Cerrolaza, A.4
  • 4
    • 49949090353 scopus 로고    scopus 로고
    • Penalized feature selection and classification in bioinformatics
    • Ma S, Huang J: Penalized feature selection and classification in bioinformatics.Brief Bioinfrom 2008,9(5):392–403.
    • (2008) Brief Bioinfrom , vol.9 , Issue.5 , pp. 392-403
    • Ma, S.1    Huang, J.2
  • 5
    • 79957591684 scopus 로고    scopus 로고
    • Improving feature selection algorithms using normalised feature histograms
    • James AP, Maan A: Improving feature selection algorithms using normalised feature histograms.IET Electron lett 2011,47(8):490–491.
    • (2011) IET Electron lett , vol.47 , Issue.8 , pp. 490-491
    • James, A.P.1    Maan, A.2
  • 7
    • 33744552752 scopus 로고    scopus 로고
    • Formost large underdetermined systems of linear equations, the minimal l1-norm solution is also the sparest solution
    • Donoho D: Formost large underdetermined systems of linear equations, the minimal l1-norm solution is also the sparest solution.Comm Pure Appl Math 2006, 59:907–934.
    • (2006) Comm Pure Appl Math , vol.59 , pp. 907-934
    • Donoho, D.1
  • 8
    • 70449440300 scopus 로고    scopus 로고
    • Ultrahigh dimensional feature selection: Beyond the linear model
    • Fan J, Samworth R, Wu Y: Ultrahigh dimensional feature selection: Beyond the linear model.J Machine Learning Res 2009, 10:2013–2038.
    • (2009) J Machine Learning Res , vol.10 , pp. 2013-2038
    • Fan, J.1    Samworth, R.2    Wu, Y.3
  • 11
    • 84865779001 scopus 로고    scopus 로고
    • Nearest Neighbor Classifier Based on Nearest Feature Decisions
    • James AP, Dimitrijev S: Nearest Neighbor Classifier Based on Nearest Feature Decisions.Comput J 2012. doi:10.1093/comjnl/bxs001
    • (2012) Comput J
    • James, A.P.1    Dimitrijev, S.2
  • 12
    • 77957017440 scopus 로고    scopus 로고
    • Inter-image outliers and their application to image classification
    • James A, Dimitrijev S: Inter-image outliers and their application to image classification.Pattern Recognit 2010,43(12):4101–4112.
    • (2010) Pattern Recognit , vol.43 , Issue.12 , pp. 4101-4112
    • James, A.1    Dimitrijev, S.2
  • 14
    • 53749107899 scopus 로고    scopus 로고
    • Dimensionality reduction based on rough set theory: A review
    • Thangavel K, Pethalakshmi A: Dimensionality reduction based on rough set theory: A review.Appl Soft Comput 2009,9(1):1–12.
    • (2009) Appl Soft Comput , vol.9 , Issue.1 , pp. 1-12
    • Thangavel, K.1    Pethalakshmi, A.2
  • 17
    • 17044405923 scopus 로고    scopus 로고
    • Toward intergrating feature selection algorithms for classification and clustering
    • Liu H, Yu L: Toward intergrating feature selection algorithms for classification and clustering.IEEE Transactions Knowledge Data Eng 2005,17(3):1–12.
    • (2005) IEEE Transactions Knowledge Data Eng , vol.17 , Issue.3 , pp. 1-12
    • Liu, H.1    Yu, L.2
  • 18
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expressions
    • Li T, Zhang C, Ogihara M: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expressions.Bioinformatics 2004,20(15):2429–2437.
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 19
    • 0038021028 scopus 로고    scopus 로고
    • A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns
    • Liu H, Li J, Wong L: A comparative study on feature selection and classification methods using gene expression profiles and proteomic patterns.Genone Inform 2002, 13:51–60.
    • (2002) Genone Inform , vol.13 , pp. 51-60
    • Liu, H.1    Li, J.2    Wong, L.3
  • 20
    • 0141990695 scopus 로고    scopus 로고
    • Theoritical and emperical analysis of Relief and Relief
    • Sikonja MR, Kononenko I: Theoritical and emperical analysis of Relief and Relief.Machine Learning 2003, 53:23–69.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Sikonja, M.R.1    Kononenko, I.2
  • 28
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for Feature Subset Selection
    • Kohavi R, John G: Wrappers for Feature Subset Selection.Artif Intelligence 1997,97(1–2):273–324.
    • (1997) Artif Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 32
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M, Liu H: Feature selection for classification.Intell Data Anal 1997,1(3):131–156.
    • (1997) Intell Data Anal , vol.1 , Issue.3 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 33
    • 0017535866 scopus 로고
    • Branch and bound algorithm for feature subset selection
    • Narendra PM, Fukunaga K: Branch and bound algorithm for feature subset selection.IEEE Trans Comput 1977,26(9):917–922.
    • (1977) IEEE Trans Comput , vol.26 , Issue.9 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 36
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelavent features
    • Almuallim H, Dietterich TG: Learning boolean concepts in the presence of many irrelavent features.Artif Intelligence 1994,69(1–2):278–305.
    • (1994) Artif Intelligence , vol.69 , Issue.1-2 , pp. 278-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 38
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum AL, Langley P: Selection of relevant features and examples in machine learning.Artif Intelligence 1997, 97:245–271.
    • (1997) Artif Intelligence , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 42
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: evaluation, application, and small sample performance
    • Jain A, Zongker D: Feature selection: evaluation, application, and small sample performance.IEEE Trans Pattern Anal Mach Intell 1997, 19:153–158.
    • (1997) IEEE Trans Pattern Anal Mach Intell , vol.19 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 43
    • 0026453958 scopus 로고
    • Training a 3-Node Neural Networks in NP-Complete
    • Blum A, Rivest R: Training a 3-Node Neural Networks in NP-Complete.Neural Networks 1992, 5:117–127.
    • (1992) Neural Networks , vol.5 , pp. 117-127
    • Blum, A.1    Rivest, R.2
  • 46
    • 30044438683 scopus 로고    scopus 로고
    • Combined SVM-based feature selection and classification
    • Neumann J, Schnorr C, Steidl G: Combined SVM-based feature selection and classification.Machine Learning 2005, 61:129–150.
    • (2005) Machine Learning , vol.61 , pp. 129-150
    • Neumann, J.1    Schnorr, C.2    Steidl, G.3
  • 47
    • 77954565155 scopus 로고    scopus 로고
    • Discriminative semisupervised feature selection via manifold regularization
    • Xu Z, King I, Lyu MR-T, Jin R: Discriminative semisupervised feature selection via manifold regularization.IEEE Trans. on Neural Networks 2010,21(7):1033–1047.
    • (2010) IEEE Trans. on Neural Networks , vol.21 , Issue.7 , pp. 1033-1047
    • Xu, Z.1    King, I.2    Lyu, M.R.-T.3    Jin, R.4
  • 50
    • 5444276626 scopus 로고    scopus 로고
    • Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status
    • Haslinger C, Schweifer N, Stilgenbauer S, Dhner H, Lichter P, Kraut N, Stratowa C, Abseher R: Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status.J Clin Oncol 2004,22(19):3937–3949.
    • (2004) J Clin Oncol , vol.22 , Issue.19 , pp. 3937-3949
    • Haslinger, C.1    Schweifer, N.2    Stilgenbauer, S.3    Dhner, H.4    Lichter, P.5    Kraut, N.6    Stratowa, C.7    Abseher, R.8
  • 51
    • 77953037177 scopus 로고    scopus 로고
    • Ovo1 links Wnt signaling with N-cadherin localization during neural crest migration
    • Piloto S, Schilling T: Ovo1 links Wnt signaling with N-cadherin localization during neural crest migration.Development 2010,137(12):1981–1990.
    • (2010) Development , vol.137 , Issue.12 , pp. 1981-1990
    • Piloto, S.1    Schilling, T.2
  • 53
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
    • Peng H, Long F, Ding C: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy.IEEE Trans Pattern Anal Machine Intell 2005,27(8):1226–1238.
    • (2005) IEEE Trans Pattern Anal Machine Intell , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.