-
1
-
-
67349132223
-
Physiological functions of the HECT family of ubiquitin ligases
-
Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 2009; 10: 398-409.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 398-409
-
-
Rotin, D.1
Kumar, S.2
-
3
-
-
33846471122
-
Proteasome-independent functions of ubiquitin in endocytosis and signaling
-
Mukhopadhyay D, Riezman H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 2007; 315: 201-205.
-
(2007)
Science
, vol.315
, pp. 201-205
-
-
Mukhopadhyay, D.1
Riezman, H.2
-
4
-
-
77953915005
-
Ubiquitin signalling in DNA replication and repair
-
Ulrich HD, Walden H. Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Boil 2010; 11: 479-489.
-
(2010)
Nat Rev Mol Cell Boil
, vol.11
, pp. 479-489
-
-
Ulrich, H.D.1
Walden, H.2
-
5
-
-
8844237615
-
Polyubiquitin chains: Polymeric protein signals
-
Pickart CM, Fushman D. Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol 2004; 8: 610-616.
-
(2004)
Curr Opin Chem Biol
, vol.8
, pp. 610-616
-
-
Pickart, C.M.1
Fushman, D.2
-
6
-
-
63049125531
-
Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
-
Xu P, Duong DM, Seyfried NT, Cheng D, Xie Y, Robert J et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009; 137: 133-145.
-
(2009)
Cell
, vol.137
, pp. 133-145
-
-
Xu, P.1
Duong, D.M.2
Seyfried, N.T.3
Cheng, D.4
Xie, Y.5
Robert, J.6
-
7
-
-
77449155637
-
The multiple levels of regulation by p53 ubiquitination
-
Lee JT, Gu W. The multiple levels of regulation by p53 ubiquitination. Cell Death Differ 2010; 17: 86-92.
-
(2010)
Cell Death Differ
, vol.17
, pp. 86-92
-
-
Lee, J.T.1
Gu, W.2
-
8
-
-
0028834902
-
Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53
-
Jones SN, Roe AE, Donehower LA, Bradley A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 1995; 378: 206-208.
-
(1995)
Nature
, vol.378
, pp. 206-208
-
-
Jones, S.N.1
Roe, A.E.2
Donehower, L.A.3
Bradley, A.4
-
9
-
-
0028823020
-
Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53
-
Montes de Oca Luna R, Wagner DS, Lozano G. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 1995; 378: 203-206.
-
(1995)
Nature
, vol.378
, pp. 203-206
-
-
De Oca Luna, M.R.1
Wagner, D.S.2
Lozano, G.3
-
10
-
-
0030905284
-
Mdm2 promotes the rapid degradation of p53
-
Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997; 387: 296-299.
-
(1997)
Nature
, vol.387
, pp. 296-299
-
-
Haupt, Y.1
Maya, R.2
Kazaz, A.3
Oren, M.4
-
11
-
-
0030667702
-
DNA damage-induced phosphorylation of p53 alleviates inhibition by Mdm2
-
Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by Mdm2. Cell 1997; 91: 325-334.
-
(1997)
Cell
, vol.91
, pp. 325-334
-
-
Shieh, S.Y.1
Ikeda, M.2
Taya, Y.3
Prives, C.4
-
12
-
-
0037112901
-
MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation
-
Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E et al. MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 2002; 21: 6236-6245.
-
(2002)
EMBO J
, vol.21
, pp. 6236-6245
-
-
Ito, A.1
Kawaguchi, Y.2
Lai, C.H.3
Kovacs, J.J.4
Higashimoto, Y.5
Appella, E.6
-
13
-
-
43049163953
-
Acetylation is indispensable for p53 activation
-
Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell 2008; 133: 612-626.
-
(2008)
Cell
, vol.133
, pp. 612-626
-
-
Tang, Y.1
Zhao, W.2
Chen, Y.3
Zhao, Y.4
Gu, W.5
-
14
-
-
2342447397
-
The ubiquitin ligase COP1 is a critical negative regulator of p53
-
Dornan D, Wertz I, Shimizu H, Arnott D, Frantz GD, Dowd P et al. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 2004; 429: 86-92.
-
(2004)
Nature
, vol.429
, pp. 86-92
-
-
Dornan, D.1
Wertz, I.2
Shimizu, H.3
Arnott, D.4
Frantz, G.D.5
Dowd, P.6
-
15
-
-
0037459377
-
Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation
-
Leng RP, Lin Y, Ma W, Wu H, Lemmers B, Chung S et al. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 2003; 112: 779-791.
-
(2003)
Cell
, vol.112
, pp. 779-791
-
-
Leng, R.P.1
Lin, Y.2
Ma, W.3
Wu, H.4
Lemmers, B.5
Chung, S.6
-
17
-
-
77957558627
-
Making sense of ubiquitin ligases that regulate p53
-
Jain AK, Barton MC. Making sense of ubiquitin ligases that regulate p53. Cancer Biol Ther 2010; 10: 665-672.
-
(2010)
Cancer Biol Ther
, vol.10
, pp. 665-672
-
-
Jain, A.K.1
Barton, M.C.2
-
18
-
-
79953310717
-
COP1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice
-
Migliorini D, Bogaerts S, Defever D, Vyas R, Denecker G, Radaelli E et al. COP1 constitutively regulates c-Jun protein stability and functions as a tumor suppressor in mice. J Clin Invest 2011; 121: 1329-1343.
-
(2011)
J Clin Invest
, vol.121
, pp. 1329-1343
-
-
Migliorini, D.1
Bogaerts, S.2
Defever, D.3
Vyas, R.4
Denecker, G.5
Radaelli, E.6
-
19
-
-
80053579178
-
Pirh2 E3 ubiquitin ligase monoubiquitinates DNA polymerase eta to suppress translesion DNA synthesis
-
Jung YS, Hakem A, Hakem R, Chen X. Pirh2 E3 ubiquitin ligase monoubiquitinates DNA polymerase eta to suppress translesion DNA synthesis. Mol Cell Biol 2011; 31: 3997-4006.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 3997-4006
-
-
Jung, Y.S.1
Hakem, A.2
Hakem, R.3
Chen, X.4
-
20
-
-
33750834640
-
E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation
-
Le Cam L, Linares LK, Paul C, Julien E, Lacroix M, Hatchi E et al. E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 2006; 127: 775-788.
-
(2006)
Cell
, vol.127
, pp. 775-788
-
-
Le Cam, L.1
Linares, L.K.2
Paul, C.3
Julien, E.4
Lacroix, M.5
Hatchi, E.6
-
22
-
-
84866905219
-
Common fragile sites: Genomic hotspots of DNA damage and carcinogenesis
-
Ma K, Qiu L, Mrasek K, Zhang J, Liehr T, Quintana LG et al. Common fragile sites: genomic hotspots of DNA damage and carcinogenesis. Int J Mol Sci 2012; 13: 11974-11999.
-
(2012)
Int J Mol Sci
, vol.13
, pp. 11974-11999
-
-
Ma, K.1
Qiu, L.2
Mrasek, K.3
Zhang, J.4
Liehr, T.5
Quintana, L.G.6
-
23
-
-
77952240146
-
An HDAC1-binding domain within FATS bridges p21 turnover to radiation-induced tumorigenesis
-
Li Z, Zhang Q, Mao JH, Weise A, Mrasek K, Fan X et al. An HDAC1-binding domain within FATS bridges p21 turnover to radiation-induced tumorigenesis. Oncogene 2010; 29: 2659-2671.
-
(2010)
Oncogene
, vol.29
, pp. 2659-2671
-
-
Li, Z.1
Zhang, Q.2
Mao, J.H.3
Weise, A.4
Mrasek, K.5
Fan, X.6
-
24
-
-
77956568973
-
FATS is a transcriptional target of p53 and associated with antitumor activity
-
Zhang X, Zhang Q, Zhang J, Qiu L, Yan S, Feng J et al. FATS is a transcriptional target of p53 and associated with antitumor activity. Mol Cancer 2010; 9: 244.
-
(2010)
Mol Cancer
, vol.9
, pp. 244
-
-
Zhang, X.1
Zhang, Q.2
Zhang, J.3
Qiu, L.4
Yan, S.5
Feng, J.6
-
25
-
-
80053027495
-
Expression level of novel tumor suppressor gene FATS is associated with the outcome of node positive breast cancer
-
Zhang J, Gu L, Zhao L, Zhang X, Qiu L, Li Z. Expression level of novel tumor suppressor gene FATS is associated with the outcome of node positive breast cancer. Chin Med J 2011; 124: 2894-2898.
-
(2011)
Chin Med J
, vol.124
, pp. 2894-2898
-
-
Zhang, J.1
Gu, L.2
Zhao, L.3
Zhang, X.4
Qiu, L.5
Li, Z.6
-
26
-
-
84860531219
-
FATS expression is associated with cisplatin sensitivity in non small cell lung cancer
-
Tian Y, Zhang J, Yan S, Qiu L, Li Z. FATS expression is associated with cisplatin sensitivity in non small cell lung cancer. Lung Cancer 2012; 76: 416-422.
-
(2012)
Lung Cancer
, vol.76
, pp. 416-422
-
-
Tian, Y.1
Zhang, J.2
Yan, S.3
Qiu, L.4
Li, Z.5
-
27
-
-
28344456401
-
Genomic instability in radiation-induced mouse lymphoma from p53 heterozygous mice
-
Mao JH, Li J, Jiang T, Li Q, Wu D, Perez-Losada J et al. Genomic instability in radiation-induced mouse lymphoma from p53 heterozygous mice. Oncogene 2005; 24: 7924-7934.
-
(2005)
Oncogene
, vol.24
, pp. 7924-7934
-
-
Mao, J.H.1
Li, J.2
Jiang, T.3
Li, Q.4
Wu, D.5
Perez-Losada, J.6
-
28
-
-
4744350876
-
Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo
-
Saville MK, Sparks A, Xirodimas DP, Wardrop J, Stevenson LF, Bourdon JC et al. Regulation of p53 by the ubiquitin-conjugating enzymes UbcH5B/C in vivo. J Biol Chem 2004; 279: 42169-42181.
-
(2004)
J Biol Chem
, vol.279
, pp. 42169-42181
-
-
Saville, M.K.1
Sparks, A.2
Xirodimas, D.P.3
Wardrop, J.4
Stevenson, L.F.5
Bourdon, J.C.6
-
29
-
-
79957949190
-
UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids
-
Wenzel DM, Lissounov A, Brzovic PS, Klevit RE. UBCH7 reactivity profile reveals parkin and HHARI to be RING/HECT hybrids. Nature 2011; 474: 105-108.
-
(2011)
Nature
, vol.474
, pp. 105-108
-
-
Wenzel, D.M.1
Lissounov, A.2
Brzovic, P.S.3
Klevit, R.E.4
-
30
-
-
33847401446
-
Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1
-
Laine A, Ronai Z. Regulation of p53 localization and transcription by the HECT domain E3 ligase WWP1. Oncogene 2007; 26: 1477-1483.
-
(2007)
Oncogene
, vol.26
, pp. 1477-1483
-
-
Laine, A.1
Ronai, Z.2
-
31
-
-
33845202484
-
Regulation of p53 localization and activity by Ubc13
-
Laine A, Topisirovic I, Zhai D, Reed JC, Borden KL, Ronai Z. Regulation of p53 localization and activity by Ubc13. Mol Cell Biol 2006; 26: 8901-8913.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 8901-8913
-
-
Laine, A.1
Topisirovic, I.2
Zhai, D.3
Reed, J.C.4
Borden, K.L.5
Ronai, Z.6
-
32
-
-
65349103899
-
Blinded by the light: The growing complexity of p53
-
Vousden KH, Prives C. Blinded by the light: the growing complexity of p53. Cell 2009; 137: 413-431.
-
(2009)
Cell
, vol.137
, pp. 413-431
-
-
Vousden, K.H.1
Prives, C.2
-
33
-
-
70350461507
-
Building ubiquitin chains: E2 enzymes at work
-
Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol 2009; 10: 755-764.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, pp. 755-764
-
-
Ye, Y.1
Rape, M.2
-
35
-
-
84861325324
-
A20 ubiquitin ligase-mediated polyubiquitination of RIP1 inhibits caspase-8 cleavage and TRAIL-mediated apoptosis in glioblastoma
-
Bellail AC, Olson JJ, Yang X, Chen ZJ, Hao C. A20 ubiquitin ligase-mediated polyubiquitination of RIP1 inhibits caspase-8 cleavage and TRAIL-mediated apoptosis in glioblastoma. Cancer Discov 2012; 2: 140-155.
-
(2012)
Cancer Discov
, vol.2
, pp. 140-155
-
-
Bellail, A.C.1
Olson, J.J.2
Yang, X.3
Chen, Z.J.4
Hao, C.5
-
36
-
-
33644850903
-
UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination
-
Brzovic PS, Lissounov A, Christensen DE, Hoyt DW, Klevit REA. UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol Cell 2006; 21: 873-880.
-
(2006)
Mol Cell
, vol.21
, pp. 873-880
-
-
Brzovic, P.S.1
Lissounov, A.2
Christensen, D.E.3
Hoyt, D.W.4
Klevit, R.E.A.5
-
37
-
-
79952453180
-
UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53
-
Wu H, Pomeroy SL, Ferreira M, Teider N, Mariani J, Nakayama KI et al. UBE4B promotes Hdm2-mediated degradation of the tumor suppressor p53. Nat Med 2011; 17: 347-355.
-
(2011)
Nat Med
, vol.17
, pp. 347-355
-
-
Wu, H.1
Pomeroy, S.L.2
Ferreira, M.3
Teider, N.4
Mariani, J.5
Nakayama, K.I.6
-
38
-
-
0038242155
-
The adenoviral E1A induces p21WAF1/CIP1 expression in cancer cells
-
Najafi SM, Li Z, Makino K, Shao R, Hung MC. The adenoviral E1A induces p21WAF1/CIP1 expression in cancer cells. Biochem Biophys Res Commun 2003; 305: 1099-1104.
-
(2003)
Biochem Biophys Res Commun
, vol.305
, pp. 1099-1104
-
-
Najafi, S.M.1
Li, Z.2
Makino, K.3
Shao, R.4
Hung, M.C.5
-
39
-
-
10844280830
-
Adenoviral E1A targets Mdm4 to stabilize tumor suppressor p53
-
Li Z, Day CP, Yang JY, Tsai WB, Lozano G, Shih HM et al. Adenoviral E1A targets Mdm4 to stabilize tumor suppressor p53. Cancer Res 2004; 64: 9080-9085.
-
(2004)
Cancer Res
, vol.64
, pp. 9080-9085
-
-
Li, Z.1
Day, C.P.2
Yang, J.Y.3
Tsai, W.B.4
Lozano, G.5
Shih, H.M.6
|