메뉴 건너뛰기




Volumn 20, Issue 8, 2007, Pages 893-903

An enhanced self-organizing incremental neural network for online unsupervised learning

Author keywords

High density overlap; Online; Self organizing incremental neural network (SOINN); Single layer; Stability; Unsupervised learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLUSTER ANALYSIS; LEARNING SYSTEMS; ONLINE SYSTEMS; PARAMETER ESTIMATION; TOPOLOGY;

EID: 34848927515     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2007.07.008     Document Type: Article
Times cited : (185)

References (16)
  • 1
    • 0023981451 scopus 로고
    • The art of adaptive pattern recognition by a self-organizing neural network
    • Carpenter G.A., and Grossberg S. The art of adaptive pattern recognition by a self-organizing neural network. IEEE Computer 21 (1988) 77-88
    • (1988) IEEE Computer , vol.21 , pp. 77-88
    • Carpenter, G.A.1    Grossberg, S.2
  • 2
    • 0028748949 scopus 로고
    • Growing cell structures - a self-organizing network for unsupervised and supervised learning
    • Fritzke B. Growing cell structures - a self-organizing network for unsupervised and supervised learning. Neural Networks 7 (1994) 1441-1460
    • (1994) Neural Networks , vol.7 , pp. 1441-1460
    • Fritzke, B.1
  • 3
    • 34848915337 scopus 로고    scopus 로고
    • Fritzke, B. (1995). A growing neural gas network learns topologies. In Advances in neural information processing systems (pp. 625-632)
  • 4
    • 84956615237 scopus 로고    scopus 로고
    • Fritzke, B. (1997). A self-organizing network that can follow non-stationary distributions. In Proceedings of ICANN-97 (pp. 613-618)
  • 5
    • 0032091595 scopus 로고    scopus 로고
    • Guha, S., Rastogi, R., & Shim, K. (1998). Cure: An efficient clustering algorithm for large databases. In Proceeding of ACM SIGMOD conference on management of data (pp. 73-84)
  • 6
    • 0035008798 scopus 로고    scopus 로고
    • Life-long learning cell structures - continuously learning without catastrophic interference
    • Hamker F.H. Life-long learning cell structures - continuously learning without catastrophic interference. Neural Networks 14 (2001) 551-573
    • (2001) Neural Networks , vol.14 , pp. 551-573
    • Hamker, F.H.1
  • 7
    • 0033640646 scopus 로고    scopus 로고
    • Statistical pattern recognition: A review
    • Jain A.K., Duin R., and Mao J. Statistical pattern recognition: A review. IEEE Transactions on PAMI 22 1 (2000) 4-37
    • (2000) IEEE Transactions on PAMI , vol.22 , Issue.1 , pp. 4-37
    • Jain, A.K.1    Duin, R.2    Mao, J.3
  • 9
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics 43 (1982) 59-69
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 11
    • 0027632248 scopus 로고    scopus 로고
    • Neural-gas network for vector quantization and its application to time-series prediction
    • Martinetz T.M., Berkovich S.G., and Schulten K.J. Neural-gas network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks 4 4 (1996) 558-569
    • (1996) IEEE Transactions on Neural Networks , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, K.J.3
  • 12
    • 0028204732 scopus 로고
    • Topology representing networks
    • Martinetz T., and Schulten K. Topology representing networks. Neural Networks 7 3 (1994) 507-522
    • (1994) Neural Networks , vol.7 , Issue.3 , pp. 507-522
    • Martinetz, T.1    Schulten, K.2
  • 13
    • 34848826750 scopus 로고    scopus 로고
    • Shen, F. (2006). An algorithm for incremental unsupervised learning and topology representation. Ph.D. thesis. Tokyo Institute of Technology
  • 14
    • 30644459258 scopus 로고    scopus 로고
    • An incremental network for on-line unsupervised classification and topology learning
    • Shen F., and Hasegawa O. An incremental network for on-line unsupervised classification and topology learning. Neural Networks 19 (2006) 90-106
    • (2006) Neural Networks , vol.19 , pp. 90-106
    • Shen, F.1    Hasegawa, O.2
  • 15
    • 33745698956 scopus 로고    scopus 로고
    • An adaptive incremental LBG for vector quantization
    • Shen F., and Hasegawa O. An adaptive incremental LBG for vector quantization. Neural Networks 19 (2006) 694-704
    • (2006) Neural Networks , vol.19 , pp. 694-704
    • Shen, F.1    Hasegawa, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.